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Part 1:

Data modeling

Data modeling vs. interpolation

Interpolation = local approximation

4L @ datapoins
—— linear interpolation
—— spline interpolation

Data modeling = global behavior
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Data and models a °
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Given a set of observations, one often wantsto . o o
2

condense and summarize the data by fitting it ,

to a “model” that depends on adjustable parameters.
o

10

o 4 e s
Sometimes the model is simply a convenient class of functions,’such as
polynomials or Gaussians, and the fit supplies the appropriate
coefficients.

Other times, the model’'s parameters come from some underlying
theory that the data are supposed to satisfy.

The basic approach is to find a set of parameters that minimize the
difference between the data and the model.

Real data

There are important issues that go beyond the mere finding of best-fit

parameters.

« Data are generally not exact. They are subject to measurement
errors (called noise in the context of signal-processing).

* Thus, typical data never exactly fit the model that is being used,
even when that model is correct.

+ We need the means to assess whether or not the model is
appropriate, that is, we need to test the goodness-of-fit against
some useful statistical standard.

+  We usually also need to know the accuracy with which parameters
are determined by the data set. In other words, we need to know the
likely errors of the best-fit parameters.

Steps and objectives
Objectives:

» Condense and summarize the data
« Using data in applications

» Getting deeper insight
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Major steps in data modeling

1. Getting data from normally observation (experiment)
Data are generally not exact - measurement errors, noise
2. Selecting a model
a) General: a function with adjustable parameters
g9(x;a4,a,,...a,)
b) Specific: reflecting the nature of data
3. Fitting procedure

Example 1:

Godunov et al, Physica Scripta 59, 277 (1999)
On analytical fit for electron impact ionization cross sections

8 0 Bleakney (1930)
4 Nagyetal. (1960)
& Stophan etal.(1980)
O Wtzol etal. (1987)
 Krishnakumar et al. (1988)
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£ %  Shchemelnin etal. (1975)
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Least-square fitting

Fitting procedure should provide
+ Parameters q; in g(x; ay, ay, ... a,)
« Error estimates on the parameters

+ Statistical measure of goodness-of-fit
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Example 2: datafitforp + He »> p + He' + e~
Experiment: Bordenave-Montesquieu et al (1996)
Fitting equation derived from theory Godunov et al 1995 (5 parameters)
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Least-square fitting s

“Books have been written and careers have been spent i .

discussing what is meant by a good fit to experimental data™.

Assume that we have y, data points from observations where y(x). The
observable data have the experimental uncertainty y; + 0;, i = 1,2,.. N

For simplicity we assume that all the errors g; occur in the dependent
variable y; (generally both x; and y; have errors).

Our goal is to determine how well a mathematical function y = g(x) (also
called a model) can describe y; data.

Additionally, if the theory contains some parameters
900 = g(x;a4,a,,..ay) = g(x;{ay})

our goal can be viewed as determining the best values for these
parameters.
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* R. Landau et. all Computational Physics, page 159
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Least-square fitting (cont.)

We use the chi-square as a measure of how well a theoretical function g
reproduces data (maximum likelihood estimation)

NN (v Gty
r=Y, (s

The definition y? is such that smaller values of y? are better fits, with
x? = 0 occurring if the theoretical curve went through every data point.

Note that 1/(7[2 factor means that measurements with larger errors
contribute less to y2.
Least-squares fitting refers to adjusting the parameters in the theory until

a minimum in x?2 is found, that is, finding a curve that produces the least
value for the summed squares of the deviations of the data from the

function g(x).

few notes
* Maximum likelihood estimation is entirely based on intuition

+ It has no formal mathematical basis in and of itself

+ Itis based around normal distribution that is often wrong
(Statistic is not a branch of mathematics)

There are three kinds of lies: lies, damned lies and statistics - Benjamin
Disraeli (former British Prime Minister)

Statistics: The only science that enables different experts using the
same figures to draw different conclusions — Evan Esar

13

14

Least-square fitting (cont.)
The M parameters {a,, a,, ... a, } are found by solving the M equations:

a 2
6%_: 0
Attention!
For linear models
Example: g(x) = a, + a;x + a,x?
a system of linear equations
For non-linear models
Example: g(x) = (a, + a;x)e~*2* (non-linear dependence on a,)
a trial-and-error search through the M-dimensional parameter space. It
can be a very challenging task!

Often a good guess is needed to find the best fit.

Part 3:

Linear models
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A simple linear model

Consider a straight line
gx) =a, + a;x
with two parameters.

Attention: a unique solution is not possible unless the number of data
points is equal to or greater than the number of parameters.

2 Ny —ag —agx; ?
x*(ap, a,) :Z (H
i=1 0;

After evaluating

Wwe) @)

da, da,

and solving for a, and a, we have ... (see the next slide)
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Example: A simple linear model (cont.)

88 = 88y SSxy — SxSy
ap = ———— = -
N 1 N N
Xi Yi
S ¥
i=1 ! i=1 ! i=1 !

N
Sey = Z L A=ss, -2
xy a2 xx x

Statistics also gives an expression for the variance or uncertainty in the
deduced parameters:

This is a measure of the uncertainties in the values of the fitted parameters
arising from the uncertainties o; in the measured y; values.
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The correlation coefficient

A measure of the dependence of the parameters on each other is given by
the correlation coefficient:

cov (a, a,) Sy
play,a,) = ———— cov (ay,a) = — =
04y0a, A

Here cov (a,, a,) is the covariance of a, and a, and vanishes if a, and a,
are independent.

The correlation coefficient p(a,, a,) lies in the range —1 < p < 1, with a
positive p indicating that the errors in a, and a, are likely to have the same
sign, and a negative p indicating opposite signs.
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Better for numerical calculations

The preceding analytic solutions for the parameters are of the form found
in statistics books but are not optimal for numerical calculations because
subtractive cancelation can make the answers unstable.

For example, Thompson (1992)* gives improved expressions that
measure the data relative to their averages:

* Thompson, W.J. (1992) Col ting for Scientists and Engil , John Wiley & Sons.

Example: linear fit
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Parameter Value Error
ap 1.05833 0.35504
a; 0.32833 0.06309
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Goodness-of-fit

The goodness-of-fit measures the agreement between data and the fitting
model for a particular choice of the parameters

_ N—2 x?
Q = gammagq =55

where gammagq is incomplete gamma functions

« if Q > 0.1 the goodness of fit is believable

« if Q > 0.001 the fit may be acceptable

« if Q < 0.001 change the model of fitting procedure

Issues to consider

« Errors in both coordinates

* Multidimensional fits

More can be found in Press et all “Numerical recipes” (multiple
editions for Fortran, C++, Pascal, Java)

23

Part 4:

Non-linear models




Pro and cons non-linear fits

Pros:

« Afitting function can very well reflect the nature of data

» Lot of software available

Cons:

* Much more difficult to calculate. Trial-and-error approach.

284 A. L. Godunov and P. B. Ivanov
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Fig. 12. The behaviour ofa few fiting curves near the threshold for single

ionisation of Ne by clectron impact. The nonlinear fit has been obtained

using the arc tangent formula (13) of Section 5, with the coeficients 25
A= 11171076V em?, B = 24710 eV2am’, § = 024,
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Part 5:

Software and libraries
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Other methods

* Quick-and-dirty Monte-Carlo: The bootstrap method
+ Genetic algorithm
+ Simulated annealing

* and many more ...
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A simple linear model

Program libraries:

* minpac

* lapack

» slatec

* sminpack
* napack
Software

» Excel

+ Origin

* MatlLab

+ Systat

+ Statistica
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Example: Origin

Non-linear fit
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Excel — easy way
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