
1

Data Fitting
A. Godunov

1. Data modeling
2. Least-square fitting
3. Linear models
4. Non-linear models
5. Software
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Part 1: 

Data modeling
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Data modeling vs. interpolation

Interpolation = local approximation

Data modeling = global behavior
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Data and models

Given a set of observations, one often wants to 
condense and summarize the data by fitting it 
to a “model” that depends on adjustable parameters. 

Sometimes the model is simply a convenient class of functions, such as 
polynomials or Gaussians, and the fit supplies the appropriate 
coefficients. 

Other times, the model’s parameters come from some underlying 
theory that the data are supposed to satisfy.

The basic approach is to find a set of parameters that minimize the 
difference between the data and the model.
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Real data

There are important issues that go beyond the mere finding of best-fit 
parameters. 

• Data are generally not exact. They are subject to measurement 
errors (called noise in the context of signal-processing). 

• Thus, typical data never exactly fit the model that is being used, 
even when that model is correct. 

• We need the means to assess whether or not the model is 
appropriate, that is, we need to test the goodness-of-fit against 
some useful statistical standard. 

• We usually also need to know the accuracy with which parameters 
are determined by the data set. In other words, we need to know the 
likely errors of the best-fit parameters. 
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Steps and objectives

Objectives:

• Condense and summarize the data

• Using data in applications

• Getting deeper insight
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Major steps in data modeling

1. Getting data from normally observation (experiment)
Data are generally not exact - measurement errors, noise

2. Selecting a model
a) General: a function with adjustable parameters 

𝑔(𝑥; 𝑎! , 𝑎" , … 𝑎#)
b) Specific: reflecting the nature of data

3. Fitting procedure
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Fitting procedure should provide

• Parameters 𝑎$  in 𝑔(𝑥; 𝑎! , 𝑎" , … 𝑎#)

• Error estimates on the parameters

• Statistical measure of goodness-of-fit
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Example 1:

Godunov et al, Physica Scripta 59, 277 (1999)
On analytical fit for electron impact ionization cross sections
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Bleakney (1930)
Nagy et al. (1980)
Stephan et al. (1980)
Wetzel et al. (1987)
Krishnakumar et al. (1988)
Almeida et al. (1995)
Shchemelinin et al. (1975)
Recommended BELI-3
Recommended BELI-5

9

Example 2: data fit for 𝑝	 + 	𝐻𝑒	 → 	𝑝	 + 	𝐻𝑒) 	+	𝑒*

Experiment: Bordenave-Montesquieu et al (1996)

Fitting equation derived from theory Godunov et al 1995 (5 parameters)10
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Part 2: 

Least-square fitting
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Least-square fitting 

“Books have been written and careers have been spent 
discussing what is meant by a good fit to experimental data”*. 

Assume that we have 𝑦%  data points from observations where 𝑦(𝑥). The 
observable data have the experimental uncertainty 𝑦& ± 𝜎& , 𝑖 = 1, 2, … 𝑁

For simplicity we assume that all the errors 𝜎&  occur in the dependent 
variable 𝑦&  (generally both 𝑥&  and 𝑦&  have errors). 

Our goal is to determine how well a mathematical function 𝑦 = 𝑔(𝑥)	(also 
called a model) can describe 𝑦&  data. 

Additionally, if the theory contains some parameters

𝑔 𝑥 ≡ 𝑔 𝑥; 𝑎! , 𝑎" , … 𝑎' = 𝑔(𝑥; 𝑎' )

our goal can be viewed as determining the best values for these 
parameters. 

* R. Landau et. all Computational Physics, page 159
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Least-square fitting (cont.)

We use the chi-square as a measure of how well a theoretical function 𝑔 
reproduces data (maximum likelihood estimation) 

𝜒" = 6
&(!

% 𝑦& − 𝑔 𝑥& ; 𝑎'
𝜎&

"

The definition 𝜒"  is such that smaller values of 𝜒" are better fits, with 
𝜒" = 0 occurring if the theoretical curve went through every data point. 

Note that ⁄1 𝜎&
"  factor means that measurements with larger errors 

contribute less to 𝜒" . 

Least-squares fitting refers to adjusting the parameters in the theory until 
a minimum in 𝜒" is found, that is, finding a curve that produces the least 
value for the summed squares of the deviations of the data from the 
function 𝑔(𝑥). 
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few notes

• Maximum likelihood estimation is entirely based on intuition

• It has no formal mathematical basis in and of itself 

• It is based around normal distribution that is often wrong
(Statistic is not a branch of mathematics)

There are three kinds of lies: lies, damned lies and statistics - Benjamin 
Disraeli (former British Prime Minister)

Statistics: The only science that enables different experts using the 
same figures to draw different conclusions – Evan Esar
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Least-square fitting (cont.)

The 𝑀 parameters {𝑎! , 𝑎" , … 𝑎' } are found by solving the 𝑀 equations: 

𝜕𝜒"

𝜕𝑎&
= 0

Attention!

For linear models

Example: 𝑔 𝑥 = 𝑎) + 𝑎!𝑥 + 𝑎"𝑥"

a system of linear equations

For non-linear models

Example: 𝑔 𝑥 = 𝑎) + 𝑎!𝑥 𝑒*+,-   (non-linear dependence on 𝑎")

a trial-and-error search through the 𝑀-dimensional parameter space. It 
can be a very challenging task!

Often a good guess is needed to find the best fit.

15

15

Part 3: 

Linear models
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A simple linear model

Consider a straight line

𝑔 𝑥 = 𝑎) + 𝑎!𝑥

with two parameters. 

Attention: a unique solution is not possible unless the number of data 
points is equal to or greater than the number of parameters. 

𝜒" 𝑎) , 𝑎! = 6
&(!

% 𝑦& − 𝑎) − 𝑎!𝑥&
𝜎&

"

After evaluating 

𝜕𝜒" 𝑎) , 𝑎!
𝜕𝑎)

= 0,
𝜕𝜒" 𝑎) , 𝑎!

𝜕𝑎!
= 0

and solving for 𝑎)  and 𝑎!  we have … (see the next slide)
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Example: A simple linear model (cont.)

𝑎) =
𝑆--𝑆. − 𝑆-𝑆-.

∆
, 	 𝑎! =

𝑆𝑆-. − 𝑆-𝑆.
∆

𝑆 = 6
&(!

%
1
𝜎&
" , 	 𝑆- = 6

&(!

%
𝑥&
𝜎&
" , 	 𝑆. = 6

&(!

%
𝑦&
𝜎&
"

𝑆-- = 6
&(!

%
𝑥&
"

𝜎&
" , 𝑆-. = 6

&(!

%
𝑥&𝑦&
𝜎&
" , ∆= 𝑆𝑆-- − 𝑆-"

Statistics also gives an expression for the variance or uncertainty in the 
deduced parameters: 

𝜎+/
" =

𝑆--
∆
, 	 𝜎+0

" =
𝑆
∆

This is a measure of the uncertainties in the values of the fitted parameters 
arising from the uncertainties 𝜎&  in the measured 𝑦&  values.
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The correlation coefficient

A measure of the dependence of the parameters on each other is given by 
the correlation coefficient: 

𝜌 𝑎) , 𝑎! =
𝑐𝑜𝑣	(𝑎) , 𝑎!)
𝜎+/𝜎+0

, 	𝑐𝑜𝑣 𝑎) , 𝑎! = −
𝑆-
∆

Here 𝑐𝑜𝑣 𝑎) , 𝑎! 	is the covariance of 𝑎)  and 𝑎!  and vanishes if 𝑎)  and 𝑎!  
are independent. 

The correlation coefficient 𝜌 𝑎) , 𝑎! 	lies in the range −1 ≤ 𝜌 ≤ 1, with a 
positive 𝜌 indicating that the errors in 𝑎)  and 𝑎! 	are likely to have the same 
sign, and a negative 𝜌 indicating opposite signs. 
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Better for numerical calculations

The preceding analytic solutions for the parameters are of the form found 
in statistics books but are not optimal for numerical calculations because 
subtractive cancelation can make the answers unstable. 

For example, Thompson (1992)* gives improved expressions that 
measure the data relative to their averages: 

𝑎) = 𝑦 − 𝑎!𝑥, 	 𝑎! =
𝑆-.
𝑆--

, 	 𝑥 =
1
𝑁
6
&(!

%

𝑥& , 𝑦 =
1
𝑁
6
&(!

%

𝑦& ,

𝑆-. = 6
&(!

%
(𝑥& − 𝑥)(𝑦& − 𝑦)

𝜎&
" , 𝑆-- = 6

&(!

%
𝑥& − 𝑥 "

𝜎&
" .

* Thompson, W.J. (1992) Computing for Scientists and Engineers, John Wiley & Sons.
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Example: linear fit

Parameter Value  Error
-----------------------------------------------
a0  1.05833 0.35504
a1  0.32833 0.06309
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Goodness-of-fit 

The goodness-of-fit measures the agreement between data and the fitting 
model for a particular choice of the parameters

𝑄 = gammaq
𝑁 − 2
2

,
𝜒"

2

where gammaq is incomplete gamma functions

• if 𝑄 > 0.1 the goodness of fit is believable

• if 𝑄 > 0.001 the fit may be acceptable

• if 𝑄 < 0.001 change the model of fitting procedure 
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Issues to consider 

• Errors in both coordinates

• Multidimensional fits

More can be found in Press et all “Numerical recipes” (multiple 
editions for Fortran, C++, Pascal, Java)
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Part 4: 

Non-linear models
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Pro and cons non-linear fits

Pros:

• A fitting function can very well reflect the nature of data

• Lot of software available

Cons:

• Much more difficult to calculate. Trial-and-error approach.
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Other methods

• Quick-and-dirty Monte-Carlo: The bootstrap method

• Genetic algorithm

• Simulated annealing  

• and many more …
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Part 5: 

Software and libraries
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A simple linear model

Program libraries: 
• minpac
• lapack
• slatec
• sminpack
• napack
• …

Software
• Excel
• Origin  
• MatLab  
• Systat  
• Statistica 
• … 28
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Example: Origin

Polynomial fit
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Example: Origin

Non-linear fit
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Example: Excel

if you can not see “Solver” – check “Add-ins…” 31
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Example: Excel
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Example: Excel
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Example: Excel

Excel – easy way
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Example: Excel

Excel – easy way
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