
1

Ordinary Differential Equations III
A. Godunov

1. Boundary value problem: introduction
2. The shooting method
3. The equilibrium method
4. Eigenproblems (solving Schrodinger equation)

1

Part 1:

Introduction to the boundary value problem

2

Boundary value problem vs. initial value problem

The boundary value problem is more challenging than the initial value
problem both analytically and numerically

For initial value problems

• Sufficient initial conditions determine unique solutions

• Same numerical methods work for both linear and nonlinear ODE

For boundary value problems

• The solution may not exist for given boundary conditions, or it may
not be unique

• Some numerical methods work only for linear ODE

example: 𝑦 !! + 𝑦 = 0.

for 𝑦 0 = 1, 𝑦 ⁄𝜋 2 = 0, 	 𝑦 𝑥 = cos 𝑥

for 𝑦 0 = 0, 	𝑦 𝜋 = 0, 	 𝑦 𝑥 = C	sin 𝑥 (not unique)

for 𝑦 0 = 1, 	𝑦 𝜋 = 1 no solution 3

3

Major methods for the boundary value problem

Two classes of numerical methods for solving boundary value problems

I. Finite difference methods

a) The shooting method

b) The equilibrium method

II. Linear combination of trial functions

a) The finite element method

b) The Rayleigh-Ritz method

c) The Galerkin method

d) The collocation method

4

4

Second-order ODE with boundary conditions

Linear second-order ODE as an excellent starting point

𝑦 !! + 𝑝 𝑥 𝑦 ! + 𝑞 𝑥 𝑦 = 𝑓(𝑥)

General boundary conditions

𝑎"𝑦 ! 0 + 𝑏"𝑦 0 = 𝑐"
𝑎#𝑦 ! 𝑙 + 𝑏#𝑦 𝑙 = 𝑐#

Specific types of boundary conditions

1. Dirichlet boundary conditions
𝑦 0 = 𝑦$, 𝑦 𝑙 = 𝑦%

2. Neumann boundary conditions
𝑦 ! 0 = 𝑦$! , 	 𝑦 ! 𝑙 = 𝑦%

!

3. Mixed boundary conditions – see general boundary conditions

5

5

Part 2:

The shooting method

6

2

Key idea for the shooting method

• The key idea of the shooting method is to transform the boundary
value ODE into a system of first-order ODEs and solve as an initial
value problem.

• Only boundary condition on one side is used as one of the initial
conditions. The additional initial condition is assumed.

• Then an iterative approach is used to vary the assumed initial
condition till the boundary condition on the other side is satisfied.

7

7

From boundary value problem to initial value problem

Consider the general nonlinear second-order boundary-value ODE with
Dirichlet boundary conditions, written in the following form:

𝑦 !! = 𝐹 𝑥, 𝑦, 𝑦 ! , 	 𝑦 𝑥" = 𝑦" , 	 𝑦 𝑥# = 𝑦#
An initial-value problem is created by assuming a value 𝑦 ! 𝑥" = 𝑐" .
Such guess gives a solution 𝑦&'(𝑥) than is most likely does not satisfy
the given boundary condition on the right side: 𝑦&' 𝑥# ≠ 𝑦 𝑥# = 𝑦# .

8

8

From boundary value problem to initial value problem

A second guess 𝑦 ! 𝑥" = 𝑐# gives another solution with 𝑦&(𝑥# ≠ 𝑦 𝑥# .	

We can use the two solutions to initiate the iterative search to find such
𝑦 !(𝑥") that the right boundary condition is satisfied.

For a non-linear ODE this is a zero finding problem for a nonlinear
function of 𝑐 such that we need to find 𝑐 such that
 𝑓 𝑐 = 𝑦 𝑥# − 𝑦& 𝑥# = 0

9

9

Short review for solving a nonlinear problem 𝑓 𝑥 = 0

For our problem in hand it is better to proceed with “open domain
methods”. For the Newton’s method we have

𝑓 𝑥 = 𝑓 𝑥$ + 𝑥 − 𝑥$ 𝑓 ! 𝑥$ + 𝑥 − 𝑥$ # 𝑓′′(𝑥$)
2!

+ ⋯

Suppose that 𝑥 is the solution for 𝑓 𝑥 = 0. If we keep two first terms
𝑓 𝑥 = 0 = 𝑓 𝑥$ + 𝑥 − 𝑥$ 𝑓 ! 𝑥$, then

𝑥 = 𝑥$ −
) *+
), *+

, or each next iteration is 𝑥-." = 𝑥- −
) */
), */

The method of secant estimates the derivative at 𝑥- as

𝑓 ! 𝑥- =
𝑓 𝑥- − 𝑓(𝑥-0")

𝑥- − 𝑥-0"
then

𝑥-." = 𝑥- −
𝑓 𝑥-
𝑓 ! 𝑥-

= 𝑥- −
𝑓(𝑥-)(𝑥- − 𝑥-0")
𝑓 𝑥- − 𝑓(𝑥-0") 10

10

Applying the method of secants to 𝑦 𝑥B −𝑦C 𝑥B = 0

In the method of secants

𝑥-." = 𝑥- −
𝑓 𝑥-
𝑓 ! 𝑥-

= 𝑥- −
𝑓(𝑥-)(𝑥- − 𝑥-0")
𝑓 𝑥- − 𝑓(𝑥-0")

we let 𝑓 𝑐 = 𝑦 𝑥# − 𝑦& 𝑥# , and we consider 𝑐 as a variable, then

𝑐-." = 𝑐- −
𝑦# − 𝑦&1(𝑥#)[𝑐- − 𝑐-0"]

𝑦 𝑥# − 𝑦& - 𝑥# − 𝑦 𝑥# + 𝑦& -0"
or

𝑐-."	 = 𝑐- +
𝑦# − 𝑦&1 𝑥#

𝑦& - 𝑥# − 𝑦& -0"(𝑥#)
(𝑐- − 𝑐-0")

Thus, we need two guesses to initiate the

iterative process.

11

11

Special case: linear ODEs

For a linear ODE, the principle of superposition applies. First, compute
two solutions for 𝑦 ! 𝑥" = 𝑐" and 𝑦 ! 𝑥" = 𝑐# denoted by 𝑦&"(𝑥) and
𝑦&# 𝑥 respectively.

Then form a linear combination of these two solutions:

𝑦 𝑥 = 𝐶"𝑦&" 𝑥 + 𝐶#𝑦&# 𝑥 .

Applying the boundary conditions gives

𝑦" = 𝐶"𝑦&" 𝑥" + 𝐶#𝑦&# 𝑥" = 𝐶" + 𝐶# 𝑦"
𝑦# = 𝐶"𝑦&" 𝑥# + 𝐶#𝑦&# 𝑥# .

Then solving for the unknows 𝐶" and 𝐶# gives

𝐶" =
𝑦# − 𝑦&# 𝑥#

𝑦&" 𝑥# − 𝑦&# 𝑥#
, 	 𝐶# =

𝑦&" 𝑥# − 𝑦#
𝑦&" 𝑥# − 𝑦&# 𝑥#

For linear ODEs no iterations are needed

12

12

3

Example: Matlab code using the shooting method

function [x,y,dy] = shoot2(f,x,y,dy,n,eps)
%{
! Solution of the boundary-value second-order 1D ODE
! d2y/dx2 = f(x,y,dy/dx) with Dirichlet boundary conditions
! y(xmin) = ..., and y(xmax) = ...
! Method: unilizes the shooting method based on the method of secants
! (calls 4th-order Runge-Kutta to solve the initial value problem)
! written by: Alex Godunov (last revision: March 2022)
!--
! input ...
! f(x,y,dy) - function d2y/dx2 (supplied by a user)
! x(1), x(n) - boundary points
! y(1), y(n) - boundary values (Dirichlet boundary conditions)
! dy(1),dy(2) - two guesses for y'(x(1))
! n - number of grid points
! eps - tolerance (abs value)
! output ...
! y(i) and dy(i) solutions at points x(i) (i=1,...,n)
! note: dy corresponds to y' (the first derivative)
%}

13

13

Example: Matlab code (cont.)

it=101; % max number of iterations
% first guesses for g(it)
g(1) = dy(1);
g(2) = dy(2);
yn = y(n); %! remember the second boundary condition
dx = (x(n)-x(1))/(n-1); % generate base points x(i) from x(1), x(n) and n
for i=2:n
 x(i) = x(i-1)+dx;
end
% shooting iterations (for the first two - we use assumed values of dy(1))
for k=1:it
 dy(1) = g(k);
 [y,dy] = rk4_2d(f,x,y,dy,n); % solves initial value ODE on n-points
 c(k) = y(n);
 if abs(yn-c(k)) < eps
 break
 end
 if k >= 2
 g(k+1)=g(k)-(c(k)-yn)*(g(k)-g(k-1))/(c(k)-c(k-1));
 end
end % end iterations
end % end function shoot2

14

14

Example: Matlab code (cont.)

function [f] = f(x,y,dy)
% --
% the second derivative - use original ODE
% d2y/dx2 = f(x,y,dy)
% --
f = -4.0*dy - 6.25*y + exp(x);
end

15

15

Example 1a:

Solving 𝑦 !! = −4.0𝑦 ! − 6.25𝑦 + 𝑒* , 	𝑦 0 = 0, 𝑦 1 = 1

16

0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y(
x)

Boundary Value Problem

16

Example 1b

Solving 𝑦 !! = −4.0𝑦 ! − 6.25𝑦 + 𝑒* , 	𝑦 0 = 1, 𝑦 𝜋/2 = 1

17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

y(
x)

Boundary Value Problem

17

Example 2

𝑦 !! = −4𝑥𝑦 ∗ 𝑦 ! − 6.25𝑦# sin 𝑥𝑦 ∗ 𝑦 + 𝑒* , 	𝑦 0 = 0, 𝑦 1 = 1

18

0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.2

0.4

0.6

0.8

1

1.2

y(
x)

Boundary Value Problem

18

4

The shooting method for other boundary conditions

The boundary-value problems considered so far had Dirichlet (i.e.,
known function value) boundary conditions.

Many problems have derivative (i.e., Neumann) or mixed boundary
conditions.

The shooting method for derivative boundary conditions is analogous to
the shooting method for Dirichlet boundary conditions, except that we
shoot for the value of the derivative instead of the value of the function
at the boundary.

For the mixed boundary conditions we shoot for the mixed conditions.

19

19

Summary for the shooting method

Pro

• Solving as initial value problem

• Works very well for both linear and nonlinear ODEs

• Easy to implement fourth- or higher-order methods

• No solving a system of FDA equations

Con

• Iterative approach

• Shooting for more than one boundary condition is time-consuming

20

20

Part 3:

The equilibrium method

21

The equilibrium (boundary value) method

Key idea: construct a finite difference approximation of the exact ODE
at every point on a discrete finite difference grid. Then a system of
equations must be solved simultaneously. Here are the steps:

1. Discretizing the continuous solution domain into a discrete finite
difference grid

2. Approximating the exact derivatives in the boundary-value ODE by
algebraic finite difference approximations

3. Substituting the FDAs into the ODE to obtain an algebraic finite
difference equation

4. Solving the resulting system of algebraic FDEs
(for linear ODEs – a system of linear equations)

22

22

The finite difference approximation

“2. Approximating the exact derivatives in the boundary-value ODE by
algebraic finite difference approximations”

𝑦 𝑥3 = 𝑦3 , 𝑦 ! 𝑥3 = 𝑦3
! , 	 𝑦 !! 𝑥3 = 𝑦3

!!

𝑦3." = 𝑦3 + 𝑦3
!∆𝑥 +

1
2
𝑦3
!!∆𝑥# + ⋯

𝑦30" = 𝑦3 − 𝑦3
!∆𝑥 +

1
2
𝑦3
!!∆𝑥# + ⋯

The central difference approximation for 𝑦3
! and 𝑦3

!! are

𝑦3
! =

𝑦3." − 𝑦30"
2∆𝑥

+ 𝑂(∆𝑥#)

𝑦3
!! =

𝑦3." − 2𝑦3 + 𝑦30"
2∆𝑥#

+ 𝑂(∆𝑥#)

Higher-order approximations for 𝑦3
! and 𝑦3

!! can be derived using Taylor
series (see lecture notes on Differentiation)

23

23

Linear second-order ODE b.v. problem

We consider linear second-order ODE on 𝑎, 𝑏 with Dirichlet boundary
conditions

𝑦 !! + 𝑃 𝑥 𝑦 ! + 𝑄 𝑥 𝑦 = 𝐹 𝑥

𝑦 𝑎 = 𝐴, 	𝑦 𝑏 = 𝐵

Substituting the central difference approximations for 𝑦′ and 𝑦′′ at 𝑖 gives

𝑦3." − 2𝑦3 + 𝑦30"
2∆𝑥#

+ 𝑃3
𝑦3." − 𝑦30"

2∆𝑥
+ 𝑄3𝑦3 = 𝐹3

Multiplying all terms by ∆𝑥# , and gathering terms yields:

1 −
∆𝑥
2
𝑃3 𝑦30" + −2 + ∆𝑥#𝑄3 𝑦3 + 1 +

∆𝑥
2
𝑃3 𝑦3." = ∆𝑥#𝐹3

Applying this at each point in a discrete finite difference grid yields a
tridiagonal system of FDEs, which can be solved by the Thomas
algorithm (for solving linear tridiagonal systems of linear equations)

24

24

5

Example: application to five points 𝑖 = 1,2…5

Introducing the following notations

𝑎3 = 1 −
∆𝑥
2
𝑃3 , 𝑏3 = −2 + ∆𝑥#𝑄3 , 𝑐3 = 1 +

∆𝑥
2
𝑃3 , 𝑑3 = ∆𝑥#𝐹3

the system of equations can be rewritten as

𝑎3𝑦30" + 𝑏3𝑦3 + 𝑐3𝑦3." = 𝑑3

𝑏"𝑦" +𝑐"𝑦# +0 +0 +0 = 𝑑" − 𝑎"𝑦$
𝑎#𝑦" +𝑏#𝑦# +𝑐#𝑦4 +0 +0 = 𝑑#
0 +𝑎4𝑦# +𝑏4𝑦4 +𝑐4𝑦5 +0 = 𝑑4
0 +0 +𝑎5𝑦4 +𝑏5𝑦5 +𝑐5𝑦6 = 𝑑5
0 +0 +0 𝑎6𝑦5 +𝑏6𝑦6 = 𝑑6 − 𝑎6𝑦7

where 𝑦$ = 𝑦 𝑎 , 𝑦7 = 𝑦(𝑏).

This is clearly a tri-diagonal system.

25

25

Example: Matlab code – the equilibrium method

%{
Solving linear boundary value problem with Dirichlet boundary conditions
y'' + P(x)y' +Q(x)y = F(x)

METHOD: Equilibrium + Thomas algorithm for solving 3-diagonal system

CALLS: external functions: Thomas.m

INPUT:
P(x), Q(x), F(x) - external functions
a and y(a), b and y(b) - boundary conditions
N - total number of points in the grid, including two boundary points

OUTPUT:
Y(X) - solution as arrays Y and X (size N)

Last revision: AG March 2022
%}

function [X,Y] = ODEbvE(P, Q, F, a, ya, b, yb, N)

26

26

Example: Matlab code – cont.
function [X,Y] = ODEbvE(P, Q, F, a, ya, b, yb, N)
n = N-2;
h = (b-a)/(n+1);
for k = 1:n
 x(k) = a + k*h;
 c(k,1) = 1.0 - h*P(x(k))/2.0;
 c(k,2) = (1.0)*h*h*Q(x(k)) - 2.0;
 c(k,3) = 1.0 + h*P(x(k))/2.0;
 d(k) = h*h*F(x(k));
end
d(1) = d(1) - c(1,1)*ya;
c(1,1) = 0.0;
d(n) = d(n) - c(n,3)*yb;
c(n,3) = 0.0;
[y] = Thomas(c,d,n);
X(1) = a;
X(N) = b;
Y(1) = ya;
Y(N) = yb;
for k = 1:n
 X(k+1) = x(k);
 Y(k+1) = y(k);
end
end

27

27

Example: Matlab code – the Thomas method
function [x] = Thomas(c,b,n)
% !==
% ! Solutions to a system of tridiagonal linear equations c*x=b
% ! Method: the Thomas method
% !---
% ! input ...
% ! c(n,3) - array of coefficients for matrix where c(n,2) - diagonal
% ! b(n) - vector of the right hand coefficients b
% ! n - number of equations
% ! output ...
% ! x(n) - solutions
% !===
%step 1: forward elimination
for k = 2:n
 coeff=c(k,1)/c(k-1,2);
 c(k,2)=c(k,2)-coeff*c(k-1,3);
 b(k)=b(k)-coeff*b(k-1);
end
%step 2: back substitution
x(n) = b(n)/c(n,2);
for k = n-1:-1:1
 x(k) = (b(k)- c(k,3)*x(k+1))/c(k,2);
end
end % Thomas

28

28

Example 3:

𝑦 !! + 𝑥 + 5 𝑦 ! + 𝑥 − 1 𝑦 = cos 𝑥 𝑒0
*
5 + 1

𝑦 0 = 1, 𝑦 1 = 0

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-0.2

0

0.2

0.4

0.6

0.8

1

y(
x)

Boundary Value Problem

29

Accuracy of the second-order method

Example for the heat-transfer problem

𝑇 !! − 𝛼#𝑇 = 𝛼#𝑇8 , 𝑇 0 = 100, 𝑇 1 = 0, 𝑇8 = 0

While the fourth-order methods demonstrates
better accuracy it involves solving
a penta-diagonal system of equations.

30

30

6

Derivative boundary conditions on the right

When the equilibrium method is used to solve a boundary-value problem
with a derivative boundary condition, a finite difference procedure must
be developed to solve for the value of the function at the boundary where
the derivative boundary condition is imposed.

The finite difference approximation for Dirichlet boundary conditions

1 −
∆𝑥
2
𝑃3 𝑦30" + −2 + ∆𝑥#𝑄3 𝑦3 + 1 +

∆𝑥
2
𝑃3 𝑦3." = ∆𝑥#𝐹3

Assume that point 𝑛 is the last point of interest, and the 𝑛 + 1 is the right
boundary point.

With the Dirichlet boundary condition we have 𝑦9." , now we have 𝑦9."! .

How to update the FDA for given 𝑦9."! ?

31

31

From 𝑦XYZ[to 𝑦XYZ
We can use Newton’s backward difference polynomial for the first
derivative at 𝑛 + 1 to connect it to the value of the function at the same
point.

1. First-order
𝑦9." = 𝑦9 + ∆𝑥𝑦9."!

this is 𝑂(∆𝑥) accuracy, but if the solution is well behaved then there is
no problem

2. Second-order

𝑦9." =
1
3
4𝑦9 − 𝑦90" + 2∆𝑥𝑦9."!

3. Third-order

𝑦9." =
1
11

(18𝑦9 − 9𝑦90" + 2𝑦90# + 6∆𝑥𝑦9."!)

Generally the second-order method provides the best results since it’s
accuracy is the same as the second-order FDA – same order ∆𝑥 # 32

32

Derivative boundary conditions on the left

On the left side we can use Newton’s forward difference polynomial for
the first derivative at 𝑖 = 0 to connect it to the value of the function at the
same point.

Good practice exercises:

1. Update the FDA system of equations when the derivative boundary
condition is given for the right boundary point.

2. Update the FDA system when the derivative condition is given for the
left boundary point.

33

33

Example 4a: Dirichlet boundary condition

𝑦 !! + 2𝑦 ! + 5𝑦 = 𝑒0* ,	
𝑦 0 = 0, 𝑦 2 = 0

34

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y(
x)

Boundary Value Problem

34

Example 4b: The derivative condition on the right

𝑦 !! + 2𝑦 ! + 5𝑦 = 𝑒0* ,	
𝑦 0 = 0, 𝑦′ 2 = 0

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

y(
x)

Boundary Value Problem

35

Example 4c: The derivative condition on the left

𝑦 !! + 2𝑦 ! + 5𝑦 = 𝑒0* ,	
𝑦′ 0 = 0, 𝑦 2 = 0

36

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y(
x)

Boundary Value Problem

36

7

Boundary conditions at infinity

Occasionally one boundary condition is given at infinity.

In such a case, the boundary conditions might be
𝑦 0 = 𝐴, 𝑦 ∞ = 𝐵.

There are two procedures for implementing boundary conditions at
infinity: finite domain and asymptotic solution

37

37

Boundary conditions at infinity

Finite domain:

In this approach, the boundary condition at 𝑥 = ∞ simply replaced by the
same boundary condition applied at a finite location, 𝑥 = 𝑋.
Thus 𝑦 ∞ = 𝐵 → 𝑦(𝑋).
The major problem with this approach is determining what value of 𝑋, if
any, yields a reasonable solution to the original problem.

In most cases, our interest is in the near the region far away from infinity.
In that case, successively larger values of 𝑋, denoted by 𝑋" , 𝑋# , etc., can
be chosen, until successive solutions in the region of interest change by
less than some prescribed tolerance.

38

38

Boundary conditions at infinity

Asymptotic solution:

A second approach for implementing boundary conditions at infinity is
based on an asymptotic solution for large values of 𝑥. In many problems,
the behavior of the solution near 𝑥 → ∞ is much simpler than the
behavior in the near region, and the simplified differential equation can be
solved exactly, including the boundary condition at infinity, to yield the
solution 𝑦:;<=>. 𝑥 = 𝐹 𝑥 .
The boundary condition for the solution of the original differential
equation is determined by choosing a finite location, 𝑥	 = 	𝑋, and using it
as boundary condition at 𝑋 as 𝐹 𝑋 = 𝑌

39

39

Nonlinear ODEs

While the shooting method works well for both linear and non-linear
ODE, the equilibrium method is only practical for linear ODE.

Otherwise we need to solve a system of nonlinear FDA equations using,
for example, the Newton’s method. In this case we need to have a good
initial guess.

40

40

Summary for the equilibrium method

Pro

• Boundary conditions are automatically satisfied

• The method is good for complicated or delicate boundary conditions

Con

• A system of FDA equations should be solved

• Achieving higher than second-order accuracy demands solving a
system of many FDA equations

• Non-linear ODEs yields a system of non-linear FDA equations (hard to
solve)

• The method needs special handling for non-uniform grids.

41

41

Part 4:

Eigenvalue problem

42

8

Major methods for the boundary value problem

Eigenproblems arise in equilibrium problems in which the solution
exists only for special values (i.e., eigenvalues) of a parameter of the
problem.

Eigenproblems occur when homogeneous boundary-value ODEs also
have homogeneous boundary conditions.

The eigenvalues are to be determined in addition to the solutions.

Example:

𝑑#𝑦
𝑑𝑥#

+ 𝑘#𝑦 = 0, 	 𝑦 0 = 0, 	𝑦 1 = 0

The solutions for 𝑦(𝑥) exist only for 𝑘 = ±𝑛𝜋, 𝑛 = 1, 2, …	

There are two principal methods for solving eigenproblems

1. Equilibrium method (most general)

2. Shooting method (less powerful than equilibrium methods, but
works well with higher accuracy for some problems in physics)

43

43

More on the stationary Schrodinger equation

Stationary Schrodinger equation

−
ℏ#

2𝑚
𝑑#𝜓 𝑥
𝑑𝑥#

+ 𝑉 𝑥 − 𝐸 𝜓 𝑥 = 0

Two principal types of solutions

Type 1: Bound states - a particle is bound, i.e. it is confined to some
finite region of space.

For short-range potentials*: 𝜓 𝑥 → 𝑒0 # @ 	 (𝑥 → ∞)

For large |𝑥| we can set 𝜓 𝑥%8)A = 0, 𝜓 𝑥B3CDA = 0

*A short-range potential 𝑉 𝑥 ~ ⁄𝐶 𝑥#.E 𝜇 ≥ 0 .
A Coulomb potential is a long-range potential with different asymptotic
behavior.

Type 2: Continuum states (oscillating wave functions)

We will concentrate on solutions for bound states.
44

44

Part 4:

Methods based on FDM

45

Part 4a:

Equilibrium method

46

The equilibrium method for Schrodinger equation

While the equilibrium method can be easily applied to a general linear
ODE, we will concentrate on solving the stationary Schrodinger
equation

Using atomic units (also called Hartree units) we can write

𝑑#𝑦
𝑑𝑥#

+ 2 𝐸 − 𝑉(𝑥) 𝑦 = 0

For bound states with imply the homogeneous boundary conditions

𝑦(𝑥%8)A) = 0, 𝑦(𝑥B3CDA) = 0.

47

47

Using the finite difference approximation

Discretizing the continuous domain into a discrete finite difference grid

and using the second-order central difference for the derivative

𝑑#𝑦
𝑑𝑥#

≈
𝑦3." − 2𝑦3 + 𝑦30"

ℎ#

we have for the stationary Schrodinger equation

𝑦3." − 2𝑦3 + 𝑦30"
ℎ#

+ 𝐸 − 𝑉(𝑥3) 𝑦3 = 0

with the homogeneous boundary conditions

𝑦$ = 0, 𝑦9." = 0.

48

48

9

Transforming to the eigenvalue problem

Rearranging the terms we get classical eigenvalue problem 𝐴𝑥 = 𝜆𝑥
in linear algebra

−
𝑦3."
2ℎ#

+ 𝑦3
1
ℎ#

+ 𝑉 𝑥3 −
𝑦30"
2ℎ#

= 𝐸𝑦3

where the diagonal elements are 𝑑33 =
"

D(
+ 𝑉 𝑥3

and non-diagonal elements 𝑎30" = 𝑎3." = − "

#D(

Then we can use one of methods for solving the eigenvalue problem to
find values of 𝐸3 	(𝑖 = 1, 𝑛) and corresponding eigenfunctions.

Note that 𝑛 is the number of grid points.

Attention: Solutions for 𝐸3 < 𝑉 𝑥 |*→G
corresponds to bound states. The rest
represents pseudo-continuum states*.

49

49

Example for n=4

Assume that we need to find a solution using this grid

with 𝑦$ = 0 and 𝑦6 = 0. Then the system is

We can use the Jacoby method for symmetric matrices, or QR method,
or a method from well-established numerical library

50

50

Example: MatLab code

function [x,y,Ei,nstates] = QMSch01(Vp,Xmin,Xmax,n)
% ===
% Solver for stationary Schrodinger equation
% Version: November 2021
% ===
%{
IN:
 Vp - external function (potential)
 Xmin - left end-point
 Xmax - right end-point
 n - number of endpoint
OUT:
 x - set of grid points
 y - eigenvectors corresponding to eigenvalues
 Ei - diagonal matrix of eigenvalues
 nstates - number of bound states
%}
% 1: preparation
h = (Xmax - Xmin)/(n-1);
a = zeros(n,n);
x = zeros(n,1);
S = zeros(n,1);
Vplot = zeros(n,1); 51

51

Example: MatLab code

% 2: Calculate the matrix a(i,j)
% grid points and the diagonal elements
for k = 1:n
 x(k) = Xmin + h*(k-1);
 a(k,k) = 1.0/h^2 + Vp(x(k));
 Vplot(k) = Vp(x(k));
end
% +/- non-diagonal elements
for k=1:n-1
 a(k,k+1) = (-1.0)/(2*h^2);
 a(k+1,k) = a(k,k+1);
end

% 3. Calculating eigenvalues and eigenvectors
% === solver - eigenvalues and eigenvector (Matlab function)
[y,Ei] = eig(a);
% === end solver

% 4. sorting eigenvalues (and eigenvectors) in in ascending order
% attention - Matlab function eig may not always sort
[dwork,ind] = sort(diag(Ei));
EiSort = Ei(ind,ind);
ySort = y(:,ind); 52

52

Example: MatLab code

Ei = EiSort;
y = ySort;
% end of sorting

% 5. count bound states
Emax = Vp(Xmax);
nstates = 0;
for k = 1:n
 if Ei(k,k) > Emax
 break
 end
 nstates = nstates+1;
end

53

53

Example: MatLab code

% 6. Normalization
% Normalization integral so that |y(x)|^2 dx =1 (method: Simpson)
% note: normalization for the first m functions
for i = 1:nstates
 S(i) = 0.0;
 for k = 2:2:n-1
 S(i) = S(i) + 4.0*y(k,i)*y(k,i);
 S(i) = S(i) + 2.0*y(k+1,i)*y(k+1,i);
 end
 S(i) = S(i) + y(1,i)*y(1,i) - y(n,i)*y(n,i);
 S(i) = sqrt(S(i)*h/3.0);
end
% Normalization
for i=1:nstates
 for k=1:n
 y(k,i) = y(k,i)/S(i);
 end
end

54

54

10

Example: MatLab code

% 7. plot the potential
Vmin = min(Vplot);
Vmax = max(Vplot);
figure (1)
plot(x,Vplot,'k','LineWidth',1.2);
title('Potential');
xlabel('x');
ylabel('V(x)');
ylim([Vmin-1. Vmax*1.2+1.])
end

55

55

Example 5a: Stationary Schrodinger equation

Energies of bound states
 i Energy Analytic solutions
 1 -3.778856 -3.77791
 2 -3.123640 -3.11995
 3 -2.065921 -2.05806
 4 -0.706421 -0.69467 56

-8 -6 -4 -2 0 2 4 6 8
x

-5

-4

-3

-2

-1

0

1

V(
x)

Potential

-8 -6 -4 -2 0 2 4 6 8
x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
x)

Wave functions

56

Example 5b: Stationary Schrodinger equation

first 7 out of 18 states
 i Energy
 1 0.499997
 2 1.499984
 3 2.499959
 4 3.499922
 5 4.499872
 6 5.499809
 7 6.499734 57

-8 -6 -4 -2 0 2 4 6 8
x

0

5

10

15

20

V(
x)

Potential

-8 -6 -4 -2 0 2 4 6 8
x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
x)

Wave functions

57

Example 5c: Stationary Schrodinger equation

first 7 out of 7 states (note that eigenlevels are in two bands)
 i Energy
 1 -4.543076
 2 -4.394130
 3 -4.162973
 4 -3.885428
 5 -3.635264
 6 -0.496734
 7 -0.139594 58

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

-7

-6

-5

-4

-3

-2

-1

0

1

V(
x)

Potential

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
x)

Wave functions

58

Example 5d: Stationary Schrodinger equation

first 8 out of 12 states
 i Energy
 1 0.808594
 2 1.855739
 3 2.578056
 4 3.244557
 5 3.825692
 6 4.382126
 7 4.895134
 8 5.401913

59

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

0

2

4

6

8

10

V(
x)

Potential

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
x)

Wave functions

59

Observation

1. For a symmetric potential, 𝑉 𝑥 = 𝑉(−𝑥) the solutions are either
even or odd, that is, the wave function has definite parities.

2. Accuracy for states closer to the continuum is lower due to mixing
with pseudo-continuum states

60

60

11

Example 5d: Stationary Schrodinger equation

 first 4 out of 4 states
 i Energy
 1 -7.872870
 2 -4.376419
 3 -1.895208
 4 -0.439901

* Morse potential
61

0 1 2 3 4 5 6 7 8 9 10
x

-10

-5

0

5

10

V(
x)

Potential

0 1 2 3 4 5 6 7 8 9 10
x

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
x)

Wave functions

61

Part 4b:

Shooting method

62

The shooting method for Schrodinger equation

The idea is close to the shooting method for a regular boundary value
problem.

We choose some 𝑥=39 and 𝑥=:* as
interval of integration of the ODE.
We set the boundary conditions as
𝑦 𝑥=39 = 0, 𝑦 𝑥=:* = 0

Since for bound states asymptotically 𝑦(𝑥)~𝑒0E|*| then for
𝑦′(𝑥)~𝜇𝑒0E|*| where 𝜇 = 2𝐸 (𝐸 is the energy)
Attention (watch the signs of the derivatives for even and odd states)

Then we guess a value of 𝐸 and integrate from 𝑥=39 to 𝑥=:* , and check
if we satisfy the boundary condition on the right. And we keep adjusting
𝐸 till it works.

63

63

Serious complication

There are two mathematical solutions at 𝑥 → ∞,

𝑦 𝑥 ~𝐴𝑒0E* + 𝐵𝑒E*

one is exponentially decaying (physical solutions), and the second
solution is exponentially increasing (numerically dominant).

A small error (accuracy or round-off) will be exponentially magnified.

64

64

Algorithm for the shooting method

1. Choose 𝑥=39 , 𝑥=:* and some 𝑥$

2. Guess some 𝐸=39 and 𝐸=:* (looking for 𝐸 in between)

3. And solve the ODE for 𝐸	and 𝐸=:*

a) from the left: 𝑥=39 to 𝑥$ to get 𝑦%(𝑥$) and 𝑦%
! 𝑥$

b) then from the right: 𝑥=:* to 𝑥$ to get 𝑦B(𝑥$) and 𝑦B! 𝑥$
4. We want a smooth connection between the two solution, therefore

instead of the logarithmic derivatives
⁄𝑦%

!(𝑥$) 𝑦%(𝑥$) = ⁄𝑦B! 𝑥$ 𝑦B(𝑥$) it is preferable to use the difference
in logarithmic derivatives as

∆=
⁄𝑦%

!(𝑥$) 𝑦%(𝑥$) − ⁄𝑦B! 𝑥$ 𝑦B(𝑥$)
⁄𝑦%!(𝑥$) 𝑦%(𝑥$) + ⁄𝑦B! 𝑥$ 𝑦B(𝑥$)

5. If ∆@ s ∆@=:*> 0 then 𝐸=:* = 𝐸 otherwise 𝐸=39 = 𝐸
and repeat steps 1-4 till given tolerance.

Note: The Numerov algorithm is a very good choice for solving ODEs 65

65

Example: MatLab code
function [Ei] = Qwell02(Xmin,Xmax,X0,N,Emin,Emax,eps,state)
%{
Solving stationary Schrodinger equation
y'' + 2(E-V(x))y = 0
METHOD: shooting method + Runge-Kutta 4th as initial value problem
CALLS: rk4_2d(x,y,dy,n), ypp(x,y,dy), V(x) (potential)
INPUT:
 V(X) - a potential (as a function, so far the name is fixed)
 XMIN, XMAX - left and right endpoints for integration
 X0 - "meeting point" (results should not depend on it)
 N - number of points for the whole interval
 Emin, Emax - energy interval for searching an energy level
 eps - tolerance on matching the log derivative at X0
 state - parity (+1 for odd states and -1 for even states
OUTPUT:
 Ei - eigenvalue (energy)
Additional output (in the function)
Plot 1: matching (left/right) wavefunctions and derivatives
Plot 2: Wavefunction (normalized)
%}
global Ee
MaxIter = 128; % Max number of iterations
% Working arrays
Delta = zeros(MaxIter,1);
E = zeros(MaxIter,1);
Vp = zeros(N,1); 66

66

12

Example: MatLab code
% Phase 1: Prepare arrays x,y xl,yl, xr,yr(left and righ)
h = (Xmax - Xmin)/(N-1);
N0 = ceil((X0-Xmin)/h) + 1;
Nl = N0;
Nr = N - N0 +1;

% reserve arrays
x = zeros(N,1);
y = zeros(N,1);

xl = zeros(Nl,1);
yl = zeros(Nl,1);
dyl = zeros(Nl,1);

xr = zeros(Nr,1);
yr = zeros(Nr,1);
dyr = zeros(Nr,1);

% grid points for x, xl and xr
for k = 1:N
 x(k) = Xmin + h*(k-1);
end
for k=1:N0
 xl(k) = x(k);
end
for k=N:-1:N0
 kr = N-k+1;
 xr(kr) = x(k);
end

% Phase 2: Prepare first three energies (initialization)
E(1) = Emin;
E(2) = Emax;
E(3) = (Emin+Emax)/2;

% Phase 3: the main loop (iterations)

for k = 1:MaxIter
 Ee = E(k);
 b = sqrt(2.0*abs(Ee));

%3a Integration from the left to X0
 % initial position and the derivative on the left
 yl(1) = exp(-b*abs(xl(1)));
 dyl(1) = b*yl(1);
 [yl,dyl] = rk4_2d(xl,yl,dyl,Nl);

%3b Integration from the right to X0
 % initial position and the derivative on the right
 yr(1) = state*exp(-b*abs(xr(1)));
 dyr(1) = (-1.0)*b*yr(1);
 [yr,dyr] = rk4_2d(xr,yr,dyr,Nr);

%3C Calculating the log derivative difference between the two solutions
 Lelt = dyl(N0)/yl(N0);
 Right = dyr(Nr)/yr(Nr);
 Delta(k) = (Lelt-Right)/(Lelt + Right);

% print iterations if needed
 if k == 1 % print the header
 fprintf(' Iter Energy Match \n')
 end
 fprintf(' %3i %8.6f %10.2e \n',k,Ee,Delta(k))

%3d when k=2 check if there is a solution
 if k == 2
 if Delta(1)*Delta(2) > 0
 fprintf(' No solution for given Emin and Emax \n')
 Ei = 0.0;
 return
 end
 end

%3E bisectional search for the root
% Attention: the bisectional method may converge not only to a root
% of a function f(x)=0 but to a discontinuity, then change the matching
% point X0.
 if k >= 3
 if Delta(1)*Delta(k) < 0.0
 E(2) = E(k);
 else
 E(1) = E(k);
 Delta(1) = Delta(k);
 end
 E(k+1) = (E(1)+E(2))/2.0;
 if abs(Delta(k)) < eps
% if abs(E(1)-E(2)) < eps
 Ei = E(k);
 break
 end
 end % end bisectional search

end % end iterations

if k == MaxIter
 fprintf(' Max iterations - still no solution \n')
 Ei = 0.0;
 return
end

figure (1)
plot(xl,yl,'b',xr,yr,'r',xl,dyl,'-m',xr,dyr,'-k')
title('Matching functions and derivatives')
grid

% Phase 4: Assembling the whole wave function + normalization

% 4a One function y(x) as a sum of two solutions (left + right)
Ynorm = yr(Nr)/yl(N0);
for k = 1:N0
 x(k) = xl(k);
 y(k) = yl(k)*Ynorm;
end
for k = 1:Nr
 x(N-k+1) = xr(k);
 y(N-k+1) = yr(k);
end

% 4b Calculating Integral |y(x)|^2dx for normalization
Sn = 0.0;
for k = 2:2:N-1
 Sn = Sn + 4.0*y(k)*y(k);
 Sn = Sn + 2.0*y(k+1)*y(k+1);
end
Sn = Sn + y(1)*y(1) - y(N)*y(N);
Sn = sqrt(Sn*(h/3.0));
% 4c Normalization
for k = 1:N
 y(k) = y(k)/Sn;
 Vp(k) = V(x(k));
end

figure (2)
plot(x,y,'r')
%plot(x,y,'r',x,Vp,'b')
str = sprintf('Wave function for Ei = %6.4f',Ei);
title(str);

67

67

Example: MatLab code
% Phase 1: Prepare arrays x,y xl,yl, xr,yr(left and righ)
h = (Xmax - Xmin)/(N-1);
N0 = ceil((X0-Xmin)/h) + 1;
Nl = N0;
Nr = N - N0 +1;

% grid points for x, xl and xr
for k = 1:N
 x(k) = Xmin + h*(k-1);
end
for k=1:N0
 xl(k) = x(k);
end
for k=N:-1:N0
 kr = N-k+1;
 xr(kr) = x(k);
end

% Phase 2: Prepare first three energies (initialization)
E(1) = Emin;
E(2) = Emax;
E(3) = (Emin+Emax)/2;

68

68

Example: MatLab code
% Phase 3: the main loop (iterations)

for k = 1:MaxIter
 Ee = E(k);
 b = sqrt(2.0*abs(Ee));

%3a Integration from the left to X0
 % initial position and the derivative on the left
 yl(1) = exp(-b*abs(xl(1)));
 dyl(1) = b*yl(1);
 [yl,dyl] = rk4_2d(xl,yl,dyl,Nl);

%3b Integration from the right to X0
 % initial position and the derivative on the right
 yr(1) = state*exp(-b*abs(xr(1)));
 dyr(1) = (-1.0)*b*yr(1);
 [yr,dyr] = rk4_2d(xr,yr,dyr,Nr);

%3C Calculating the log derivative difference between the two solutions
 Lelt = dyl(N0)/yl(N0);
 Right = dyr(Nr)/yr(Nr);
 Delta(k) = (Lelt-Right)/(Lelt + Right);

69

69

Example: MatLab code
%3d when k=2 check if there is a solution
 if k == 2
 if Delta(1)*Delta(2) > 0
 fprintf(' No solution for given Emin and Emax \n')
 Ei = 0.0;
 return
 end
 end
%3E bisectional search for the root
% Attention: the bisectional method may converge not only to a root
% of a function f(x)=0 but to a discontinuity, then change the matching
% point X0.
 if k >= 3
 if Delta(1)*Delta(k) < 0.0
 E(2) = E(k);
 else
 E(1) = E(k);
 Delta(1) = Delta(k);
 end
 E(k+1) = (E(1)+E(2))/2.0;
 if abs(Delta(k)) < eps
% if abs(E(1)-E(2)) < eps
 Ei = E(k);
 break
 end
 end % end bisectional search
end % end iterations

70

70

Example: MatLab code
if k == MaxIter
 fprintf(' Max iterations - still no solution \n')
 Ei = 0.0;
 return
end

figure (1)
plot(xl,yl,'b',xr,yr,'r',xl,dyl,'-m',xr,dyr,'-k')
title('Matching functions and derivatives')
grid

% Phase 4: Assembling the whole wave function + normalization

% 4a One function y(x) as a sum of two solutions (left + right)
Ynorm = yr(Nr)/yl(N0);
for k = 1:N0
 x(k) = xl(k);
 y(k) = yl(k)*Ynorm;
end
for k = 1:Nr
 x(N-k+1) = xr(k);
 y(N-k+1) = yr(k);
end

71

71

Example: MatLab code
% 4b Calculating Integral |y(x)|^2dx for normalization
Sn = 0.0;
for k = 2:2:N-1
 Sn = Sn + 4.0*y(k)*y(k);
 Sn = Sn + 2.0*y(k+1)*y(k+1);
end
Sn = Sn + y(1)*y(1) - y(N)*y(N);
Sn = sqrt(Sn*(h/3.0));
% 4c Normalization
for k = 1:N
 y(k) = y(k)/Sn;
 Vp(k) = V(x(k));
end

figure (2)
plot(x,y,'r')
%plot(x,y,'r',x,Vp,'b')
str = sprintf('Wave function for Ei = %6.4f',Ei);
title(str);
grid

end %end function

72

72

13

Example 6: Potential well

function Vx = V(x)
a = 2.0;
if abs(x) <= a
 Vx = -4.0;
else
 Vx = 0.0;
end

 i Analytic FDM Shooting
 1 -3.77791 -3.778856 -3.778227
 2 -3.11995 -3.123640 -3.121178
 3 -2.05806 -2.065921 -2.060667
 4 -0.69467 -0.706421 -0.698546

73

-8 -6 -4 -2 0 2 4 6 8
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Matching functions and derivatives

73

The Numerov method

While Runge-Kutta methods (RK- 4th order or RKF45) works very well
for solving ODEs, there is a powerful method for solving second-order
ODEs that don’t have first derivative.

We consider equation

𝑑#𝑦
𝑑𝑥#

+ 𝑘# 𝑥 𝑦 = 𝑆(𝑥)

The power of the Numerov method is to get extra precision in the
second derivative by taking advantage of there being no first derivative
in equation above.

74

74

The Numerov method

The Taylor series for the function 𝑦(𝑥) at the points 𝑖 + 1 and n 𝑖 − 1	

𝑦3." = 𝑦3 + 𝑦3
!ℎ +

1
2
𝑦3
!!ℎ# +

1
6
𝑦3
!!!ℎ4 +

1
24

𝑦3
!!!!ℎ5 + ⋯

𝑦30" = 𝑦3 − 𝑦3
!ℎ +

1
2
𝑦3
!!ℎ# −

1
6
𝑦3
!!!ℎ4 +

1
24

𝑦3
!!!!ℎ5 − ⋯

𝑦3." + 𝑦30" = 2𝑦3 + 𝑦3
!!ℎ# +

1
12

𝑦3
!!!!ℎ5 + ⋯

Then

𝑦3
!! =

𝑦3." − 2𝑦3 + 𝑦30"
ℎ#

−
1
12

𝑦3
!!!!ℎ#

At the same time from the differential equation I
(<

I*(
+ 𝑘# 𝑥 𝑦 = 𝑆(𝑥)

𝑦3
!!!! =

𝑑#

𝑑𝑥#
v−𝑘# 𝑥 𝑦 + 𝑆 𝑥
*J*K

75

75

The Numerov method

Using the second-order central difference for the second-order
derivatives for −𝑘# 𝑥 𝑦 + 𝑆 𝑥 we have

𝑦3
!!!! = −

𝑘#𝑦 3." − 2 𝑘#𝑦 3 + 𝑘#𝑦 30"

ℎ#
+
𝑆3." − 2𝑆3 + 𝑆30"

ℎ#

then

𝑦3!! =
𝑦3." −2𝑦3 +𝑦30"

ℎ# −
1
12𝑦3

!!!!ℎ# =

𝑦3." −2𝑦3 +𝑦30"
ℎ# +

1
12ℎ

𝑘#𝑦 3." −2 𝑘#𝑦 3 + 𝑘#𝑦 30"

ℎ# +
𝑆3." −2𝑆3 +𝑆30"

ℎ#

and the equation 𝑦!! =−𝑘# 𝑥 𝑦 +𝑆 𝑥 reads

𝑦3." −2𝑦3 +𝑦30"
ℎ# +

1
12ℎ

𝑘#𝑦 3." −2 𝑘#𝑦 3 + 𝑘#𝑦 30"

ℎ# +
𝑆3." −2𝑆3 +𝑆30"

ℎ#

=− 𝑘#𝑦 3 	+ 𝑆3 	

Rearranging the terms we have
76

76

The Numerov method

𝑦3." 1+
ℎ#

12𝑘3."
−2𝑦3 1−

5ℎ#

12 𝑘3
+𝑦30" 1+

ℎ#

12𝑘30"
#

=
ℎ#

12 𝑆3." +10𝑆3 +𝑆30" +𝑂 ℎ7

We see that the Numerov method uses the values of 𝑦(𝑥) at the two
previous steps 𝑥3 and 𝑥30" to move 𝑦 forward to 𝑥3." .

The Numerov methods is a three-point recursion relation.

It is stable and has a local error ~𝑂(ℎ7) the same as RKF45. We need
six calls for RKF45 and only one call for the Numerov method.

77

77

The Numerov method

Two issues:

1) the method is not self-starting, however, we can use the asymptotic
behavior

2) the method does not provide first derivatives on its own. But we
need them when matching the wave functions. We can calculate
the first derivative using the central difference formula or more
precisely

𝑦3
! =

1
2ℎ

1 +
ℎ#

12
𝑘3."
𝑦3." − 1 +

ℎ#

12
𝑘30"
𝑦30" + 𝑂(ℎ5)

Summary for the Numerov method:

The speed gain for shooting with Numerov’s method is significant. We
can use it to extend calculations to systems requiring large number of
grid points. 78

78

14

Finite difference approximation or the Shooting method?

1. The shooting method results are more accurate than the FDM
results, especially for states closer to continuum.
Note that the accuracy either RK45 or Numerov’s is higher than
second-order central difference for FDM

2. The shooting method can be used for non-homogeneous boundary
conditions

3. But the FDM is much simpler to use and can produce bound states
en masse.

79

79

Part 5

Other methods (not based on FDM)

80

More methods I: Final Element Method

Final element method - very powerful for solving Partial Differential
Equations.

It can be used for solving Schrodinger equation too.
FEM breaks space up into multiple geometric objects (elements),
determine approximate solution for each element, and then match the
solutions up at the element edges.
Much more powerful than FDM but MUCH more work required.

81

81

More methods II: Basic expansion method

The idea – expand the unknown function on a finite basis set

The method is very popular for structure calculations in multi-electron
systems. It’s often called as Configuration Interaction method.

There are very many variants of the method.

82

82

More methods III: Variational methods

The idea – the exact wavefunction gives the lowest energy for the
ground state

𝐸$ =
𝜓$ 𝑟 x𝐻 𝜓$ 𝑟
𝜓$ 𝑟 |𝜓$ 𝑟

The variational method can be adapted to give bounds on the energies
of excited states (under certain conditions).

There are many versions of the method: Hartree-Fock method,
Variational Monte-Carlo method

83

83

Variational Monte Carlo method

The objective is finding 𝜓(𝑥) that minimize

𝐸$ =
𝜓$ 𝑥 x𝐻 𝜓$ 𝑥
𝜓$ 𝑥 |𝜓$ 𝑥

=
𝜓$ 𝑥 − 12 ∇

+ 𝑉(𝑥) 𝜓$ 𝑥

𝜓$ 𝑥 |𝜓$ 𝑥

Steps:

1. Choose a trial function 𝑦A(𝑥) and discretize space into bins ∆𝑥 size

2. Choose randomly a “bin 𝑖” (or 𝑥3 value) and create a provisional
function 𝑦>(𝑥) by changing 𝑦A 𝑥 function in 𝑥3 location by an
amount chosen randomly ±𝑑𝑦- using Monte Carlo

3. Calculate 𝐸> . If it is lover that 𝐸A with 𝑦A then accept the provisional
function, if it is higher that 𝐸A then discard the provisional function

4. Keep doing 2 and 3 till desired tolerance is reached

Note: Use Metropolis method to accept/reject solutions with 𝐸> > 𝐸A
84

84

15

Example: MatLab code
% !==
% ! Monte Carlo interactive procedure to minimize energy
% ! by varying randomly f(i) and random point x(i)
% !==
function [f,energy, hits] = norfolk(x,f,df,ei,n,tests)

hits = 0;

for i = 1: tests
 %k = 2 + floor(rand*(n-2));
 k = 1+ randi(n-3);
 fold = f(k);
 f(k) = f(k) + 2.0*(rand-0.5)*df;
 ef = hamilton(x,f,n);
 if ef < ei
 ei = ef;
 f = fnorm(x,f,n);
 hits = hits + 1;
 else
 f(k) = fold;
 end
end
energy = ei;
end % norfolk

85

85

Example: MatLab code
%==
% compute <f|H|f>/<f|f> for a given x(i) and f(i)
%==
function energy = hamilton(x,f,n)

energy = 0.0;
sum = 0.0;
dx = x(2)-x(1);

for i=2:n-1
 potential = V(x(i));
 energy = energy + dx*potential*f(i)*f(i);
 energy = energy - dx*(0.5/dx*dx)*f(i)*(f(i+1)-2.0*f(i)+f(i-1));
 sum = sum + f(i)*f(i)*dx;
end
energy = energy / sum;
end % hamilton

86

86

Example: MatLab code
%===
% normalization, so that |<f|f>|**2 = 1.0
%===
function f = fnorm(x,f,n)

%f=zeros(n,1);

sum = 0.0;
dx = x(2)-x(1);

for i=2:n-1
 sum = sum + dx*f(i)*f(i);
end

for i=2:n-1
 f(i) = f(i)/ sqrt(sum);
end

end

87

87

Example: Potential well

function Vx = V(x)
a = 2.0;
if abs(x) <= a
 Vx = -4.0;
else
 Vx = 0.0;
end

Analytic solutions: -3.77791

Final energy -3.78169
Variations: 2*106
Success variations 0.007

88

-8 -6 -4 -2 0 2 4 6 8
x

-5

-4

-3

-2

-1

0

1

V(
x)

Potential

-4 -3 -2 -1 1 2 3 4

x position

-0.4

-0.2

0.2

0.4

0.6

V(x) and f(x)

88

Example: Harmonic oscillator

Analytic solutions: 0.50000
Final energy 0.50039
Variations: 2*106
Success variations 0.012

The method has lower accuracy but it can be
1. accelerated by better guesses for trial wave functions
2. extended to multidimension (multiparticle) systems

89

-2 -1 1 2

x position

-0.4

-0.2

0.2

0.4

0.6

V(x) and f(x)

89

More methods IV: Density Functional Theory

Nobel Prize 1998

The method gives energy levels (mostly ground state energies) without
calculating wave functions!

90

90

