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Ordinary Differential Equations III
A. Godunov

1. Boundary value problem: introduction
2. The shooting method
3. The equilibrium method
4. Eigenproblems (solving Schrodinger equation)
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Part 1: 

Introduction to the boundary value problem
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Boundary value problem vs. initial value problem

The boundary value problem is more challenging than the initial value 
problem both analytically and numerically

For initial value problems

• Sufficient initial conditions determine unique solutions

• Same numerical methods work for both linear and nonlinear ODE

For boundary value problems 

• The solution may not exist for given boundary conditions, or it may 
not be unique

• Some numerical methods work only for linear ODE

example: 𝑦 !! + 𝑦 = 0.

for 𝑦 0 = 1, 𝑦 ⁄𝜋 2 = 0, 	 𝑦 𝑥 = cos 𝑥

for 𝑦 0 = 0, 	𝑦 𝜋 = 0, 	 𝑦 𝑥 = C	sin 𝑥  (not unique)

for 𝑦 0 = 1, 	𝑦 𝜋 = 1        no solution 3
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Major methods for the boundary value problem

Two classes of numerical methods for solving boundary value problems

I. Finite difference methods

a) The shooting method

b) The equilibrium method

II. Linear combination of trial functions

a) The finite element method  

b) The Rayleigh-Ritz method

c) The Galerkin method

d) The collocation method
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Second-order ODE with boundary conditions

Linear second-order ODE as an excellent starting point

𝑦 !! + 𝑝 𝑥 𝑦 ! + 𝑞 𝑥 𝑦 = 𝑓(𝑥)

General boundary conditions

𝑎"𝑦 ! 0 + 𝑏"𝑦 0 = 𝑐"
𝑎#𝑦 ! 𝑙 + 𝑏#𝑦 𝑙 = 𝑐#

Specific types of boundary conditions

1. Dirichlet boundary conditions
𝑦 0 = 𝑦$ , 𝑦 𝑙 = 𝑦%

2. Neumann boundary conditions
𝑦 ! 0 = 𝑦$! , 	 𝑦 ! 𝑙 = 𝑦%

!

3. Mixed boundary conditions – see general boundary conditions
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Part 2: 

The shooting method
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Key idea for the shooting method

• The key idea of the shooting method is to transform the boundary 
value ODE into a system of first-order ODEs and solve as an initial 
value problem.

• Only boundary condition on one side is used as one of the initial 
conditions. The additional initial condition is assumed.

• Then an iterative approach is used to vary the assumed initial 
condition till the boundary condition on the other side is satisfied.
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From boundary value problem to initial value problem

Consider the general nonlinear second-order boundary-value ODE with 
Dirichlet boundary conditions, written in the following form: 

𝑦 !! = 𝐹 𝑥, 𝑦, 𝑦 ! , 	 𝑦 𝑥" = 𝑦" , 	 𝑦 𝑥# = 𝑦#
An initial-value problem is created by assuming a value 𝑦 ! 𝑥" = 𝑐" . 
Such guess gives a solution 𝑦&'(𝑥) than is most likely does not satisfy 
the given boundary condition on the right side: 𝑦&' 𝑥# ≠ 𝑦 𝑥# = 𝑦# . 
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From boundary value problem to initial value problem

A second guess 𝑦 ! 𝑥" = 𝑐#  gives another solution with 𝑦&( 𝑥# ≠ 𝑦 𝑥# .	

We can use the two solutions to initiate the iterative search to find such 
𝑦 !(𝑥") that the right boundary condition is satisfied.  

For a non-linear ODE this is a zero finding problem for a nonlinear 
function of 𝑐 such that we need to find 𝑐 such that
 𝑓 𝑐 = 𝑦 𝑥# − 𝑦& 𝑥# = 0
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Short review for solving a nonlinear problem 𝑓 𝑥 = 0

For our problem in hand it is better to proceed with “open domain 
methods”.  For the Newton’s method we have

𝑓 𝑥 = 𝑓 𝑥$ + 𝑥 − 𝑥$ 𝑓 ! 𝑥$ + 𝑥 − 𝑥$ # 𝑓′′(𝑥$)
2!

+ ⋯

Suppose that 𝑥 is the solution for 𝑓 𝑥 = 0. If we keep two first terms  
𝑓 𝑥 = 0 = 𝑓 𝑥$ + 𝑥 − 𝑥$ 𝑓 ! 𝑥$ , then 

𝑥 = 𝑥$ −
) *+
), *+

, or each next iteration is 𝑥-." = 𝑥- −
) */
), */

The method of secant estimates the derivative at 𝑥-  as

𝑓 ! 𝑥- =
𝑓 𝑥- − 𝑓(𝑥-0")

𝑥- − 𝑥-0"
then 

𝑥-." = 𝑥- −
𝑓 𝑥-
𝑓 ! 𝑥-

= 𝑥- −
𝑓(𝑥- )(𝑥- − 𝑥-0")
𝑓 𝑥- − 𝑓(𝑥-0") 10
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Applying the method of secants to 𝑦 𝑥B −𝑦C 𝑥B = 0

In the method of secants

𝑥-." = 𝑥- −
𝑓 𝑥-
𝑓 ! 𝑥-

= 𝑥- −
𝑓(𝑥- )(𝑥- − 𝑥-0")
𝑓 𝑥- − 𝑓(𝑥-0")

we let 𝑓 𝑐 = 𝑦 𝑥# − 𝑦& 𝑥# , and we consider 𝑐 as a variable, then

𝑐-." = 𝑐- −
𝑦# − 𝑦&1(𝑥#)[𝑐- − 𝑐-0"]

𝑦 𝑥# − 𝑦& - 𝑥# − 𝑦 𝑥# + 𝑦& -0"
or

𝑐-."	 = 𝑐- +
𝑦# − 𝑦&1 𝑥#

𝑦& - 𝑥# − 𝑦& -0"(𝑥#)
(𝑐- − 𝑐-0")

Thus, we need two guesses to initiate the

iterative process.

11

11

Special case: linear ODEs

For a linear ODE, the principle of superposition applies. First, compute 
two solutions for 𝑦 ! 𝑥" = 𝑐"  and 𝑦 ! 𝑥" = 𝑐#  denoted by 𝑦&"(𝑥) and 
𝑦&# 𝑥  respectively. 

Then form a linear combination of these two solutions: 

𝑦 𝑥 = 𝐶"𝑦&" 𝑥 + 𝐶#𝑦&# 𝑥 .

Applying the boundary conditions gives

𝑦" = 𝐶"𝑦&" 𝑥" + 𝐶#𝑦&# 𝑥" = 𝐶" + 𝐶# 𝑦"
𝑦# = 𝐶"𝑦&" 𝑥# + 𝐶#𝑦&# 𝑥# .

Then solving for the unknows 𝐶"  and 𝐶#  gives

𝐶" =
𝑦# − 𝑦&# 𝑥#

𝑦&" 𝑥# − 𝑦&# 𝑥#
, 	 𝐶# =

𝑦&" 𝑥# − 𝑦#
𝑦&" 𝑥# − 𝑦&# 𝑥#

For linear ODEs no iterations are needed
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Example: Matlab code using the shooting method

function [x,y,dy] = shoot2(f,x,y,dy,n,eps)
%{
! Solution of the boundary-value second-order 1D ODE
! d2y/dx2 = f(x,y,dy/dx) with Dirichlet boundary conditions
! y(xmin) = ..., and y(xmax) = ...
! Method: unilizes the shooting method based on the method of secants
! (calls 4th-order Runge-Kutta to solve the initial value problem)
! written by:  Alex Godunov (last revision: March 2022)
!----------------------------------------------------------------------
! input ...
!  f(x,y,dy)  - function d2y/dx2 (supplied by a user)
!  x(1), x(n) - boundary points
!  y(1), y(n) - boundary values (Dirichlet boundary conditions)
! dy(1),dy(2) - two guesses for y'(x(1))
!          n  - number of grid points
!        eps  - tolerance (abs value)
! output ...
!  y(i) and dy(i) solutions at points x(i) (i=1,...,n)
! note: dy corresponds to y' (the first derivative)
%}
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Example: Matlab code (cont.)

it=101;          % max number of iterations
% first guesses for g(it)
g(1) = dy(1);
g(2) = dy(2);
yn = y(n); %! remember the second boundary condition 
dx = (x(n)-x(1))/(n-1); % generate base points x(i) from x(1), x(n) and n
for i=2:n
  x(i) = x(i-1)+dx;
end
% shooting iterations (for the first two - we use assumed values of dy(1))
for k=1:it
  dy(1) = g(k);
  [y,dy] = rk4_2d(f,x,y,dy,n);  % solves initial value ODE on n-points
  c(k) = y(n);
  if abs(yn-c(k)) < eps
      break
  end
  if k >= 2
      g(k+1)=g(k)-(c(k)-yn)*(g(k)-g(k-1))/(c(k)-c(k-1));
  end
end % end iterations
end % end function shoot2
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Example: Matlab code (cont.)

function [f] = f(x,y,dy)
% ------------------------------------------
%  the second derivative - use original ODE
%  d2y/dx2 = f(x,y,dy)
% ------------------------------------------
f = -4.0*dy - 6.25*y + exp(x);
end
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Example 1a:

Solving 𝑦 !! = −4.0𝑦 ! − 6.25𝑦 + 𝑒* , 	𝑦 0 = 0, 𝑦 1 = 1
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Example 1b

Solving 𝑦 !! = −4.0𝑦 ! − 6.25𝑦 + 𝑒* , 	𝑦 0 = 1, 𝑦 𝜋/2 = 1
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Example 2

𝑦 !! = −4𝑥𝑦 ∗ 𝑦 ! − 6.25𝑦# sin 𝑥𝑦 ∗ 𝑦 + 𝑒* , 	𝑦 0 = 0, 𝑦 1 = 1
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The shooting method for other boundary conditions

The boundary-value problems considered so far had Dirichlet (i.e., 
known function value) boundary conditions. 

Many problems have derivative (i.e., Neumann) or mixed boundary 
conditions. 

The shooting method for derivative boundary conditions is analogous to 
the shooting method for Dirichlet boundary conditions, except that we 
shoot for the value of the derivative instead of the value of the function 
at the boundary. 

For the mixed boundary conditions we shoot for the mixed conditions.
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Summary for the shooting method

Pro

• Solving as initial value problem

• Works very well for both linear and nonlinear ODEs

• Easy to implement fourth- or higher-order methods

• No solving a system of FDA equations

Con

• Iterative approach

• Shooting for more than one boundary condition is time-consuming

20
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Part 3: 

The equilibrium method
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The equilibrium (boundary value) method

Key idea: construct a finite difference approximation of the exact ODE 
at every point on a discrete finite difference grid. Then a system of 
equations must be solved simultaneously. Here are the steps:

1. Discretizing the continuous solution domain into a discrete finite 
difference grid 

2. Approximating the exact derivatives in the boundary-value ODE by 
algebraic finite difference approximations

3. Substituting the FDAs into the ODE to obtain an algebraic finite 
difference equation 

4. Solving the resulting system of algebraic FDEs 
(for linear ODEs – a system of linear equations)
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The finite difference approximation

“2. Approximating the exact derivatives in the boundary-value ODE by 
algebraic finite difference approximations”

𝑦 𝑥3 = 𝑦3 , 𝑦 ! 𝑥3 = 𝑦3
! , 	 𝑦 !! 𝑥3 = 𝑦3

!!

𝑦3." = 𝑦3 + 𝑦3
!∆𝑥 +

1
2
𝑦3
!!∆𝑥# + ⋯

𝑦30" = 𝑦3 − 𝑦3
!∆𝑥 +

1
2
𝑦3
!!∆𝑥# + ⋯

The central difference approximation for 𝑦3
! and 𝑦3

!! are

𝑦3
! =

𝑦3." − 𝑦30"
2∆𝑥

+ 𝑂(∆𝑥#)

𝑦3
!! =

𝑦3." − 2𝑦3 + 𝑦30"
2∆𝑥#

+ 𝑂(∆𝑥#)

Higher-order approximations for 𝑦3
! and 𝑦3

!! can be derived using Taylor 
series (see lecture notes on Differentiation)
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Linear second-order ODE b.v. problem

We consider linear second-order ODE on 𝑎, 𝑏  with Dirichlet boundary 
conditions

𝑦 !! + 𝑃 𝑥 𝑦 ! + 𝑄 𝑥 𝑦 = 𝐹 𝑥

𝑦 𝑎 = 𝐴, 	𝑦 𝑏 = 𝐵

Substituting the central difference approximations for 𝑦′ and 𝑦′′ at 𝑖 gives

𝑦3." − 2𝑦3 + 𝑦30"
2∆𝑥#

+ 𝑃3
𝑦3." − 𝑦30"

2∆𝑥
+ 𝑄3𝑦3 = 𝐹3

Multiplying all terms by ∆𝑥# , and gathering terms yields: 

1 −
∆𝑥
2
𝑃3 𝑦30" + −2 + ∆𝑥#𝑄3 𝑦3 + 1 +

∆𝑥
2
𝑃3 𝑦3." = ∆𝑥#𝐹3

Applying this at each point in a discrete finite difference grid yields a 
tridiagonal system of FDEs, which can be solved by the Thomas 
algorithm (for solving linear tridiagonal systems of linear equations)

24
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Example: application to five points 𝑖 = 1,2…5

Introducing the following notations

𝑎3 = 1 −
∆𝑥
2
𝑃3 , 𝑏3 = −2 + ∆𝑥#𝑄3 , 𝑐3 = 1 +

∆𝑥
2
𝑃3 , 𝑑3 = ∆𝑥#𝐹3

the system of equations can be rewritten as

𝑎3𝑦30" + 𝑏3𝑦3 + 𝑐3𝑦3." = 𝑑3

𝑏"𝑦" +𝑐"𝑦# +0 +0 +0 = 𝑑" − 𝑎"𝑦$
𝑎#𝑦" +𝑏#𝑦# +𝑐#𝑦4 +0 +0 = 𝑑#
0 +𝑎4𝑦# +𝑏4𝑦4 +𝑐4𝑦5 +0 = 𝑑4
0 +0 +𝑎5𝑦4 +𝑏5𝑦5 +𝑐5𝑦6 = 𝑑5
0 +0 +0 𝑎6𝑦5 +𝑏6𝑦6 = 𝑑6 − 𝑎6𝑦7

where 𝑦$ = 𝑦 𝑎 , 𝑦7 = 𝑦(𝑏).

This is clearly a tri-diagonal system.
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Example: Matlab code – the equilibrium method

%{
Solving linear boundary value problem with Dirichlet boundary conditions
y'' + P(x)y' +Q(x)y = F(x)

METHOD: Equilibrium + Thomas algorithm for solving 3-diagonal system

CALLS: external functions: Thomas.m

INPUT:
P(x), Q(x), F(x) - external functions
a and y(a), b and y(b) - boundary conditions
N - total number of points in the grid, including two boundary points

OUTPUT: 
Y(X) - solution as arrays Y and X (size N)

Last revision: AG March 2022
%}

function [X,Y] = ODEbvE(P, Q, F, a, ya, b, yb, N)
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Example: Matlab code – cont.
function [X,Y] = ODEbvE(P, Q, F, a, ya, b, yb, N)
n = N-2;
h = (b-a)/(n+1);
for k = 1:n
    x(k) = a + k*h;
    c(k,1) = 1.0 - h*P(x(k))/2.0;
    c(k,2) = (1.0)*h*h*Q(x(k)) - 2.0;
    c(k,3) = 1.0 + h*P(x(k))/2.0;
    d(k)   = h*h*F(x(k));
end
d(1)   = d(1) - c(1,1)*ya;
c(1,1) = 0.0;
d(n)   = d(n) - c(n,3)*yb;
c(n,3) = 0.0;
[y] = Thomas(c,d,n);
X(1)  = a;
X(N)  = b;
Y(1)  = ya;
Y(N)  = yb;
for k = 1:n
    X(k+1) = x(k);
    Y(k+1) = y(k);
end
end
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Example: Matlab code – the Thomas method
function [x] = Thomas(c,b,n)
% !============================================================
% ! Solutions to a system of tridiagonal linear equations c*x=b
% ! Method: the Thomas method
% !-----------------------------------------------------------
% ! input ...
% ! c(n,3) - array of coefficients for matrix where c(n,2) - diagonal
% ! b(n)   - vector of the right hand coefficients b
% ! n      - number of equations
% ! output ...
% ! x(n)   - solutions
% !===========================================================
%step 1: forward elimination
for k = 2:n
  coeff=c(k,1)/c(k-1,2);
  c(k,2)=c(k,2)-coeff*c(k-1,3);
  b(k)=b(k)-coeff*b(k-1);
end
%step 2: back substitution
x(n) = b(n)/c(n,2);
for k = n-1:-1:1
    x(k) = (b(k)- c(k,3)*x(k+1))/c(k,2);
end
end % Thomas
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Example 3:

𝑦 !! + 𝑥 + 5 𝑦 ! + 𝑥 − 1 𝑦 = cos 𝑥 𝑒0
*
5 + 1

𝑦 0 = 1, 𝑦 1 = 0
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Accuracy of the second-order method

Example for the heat-transfer problem

𝑇 !! − 𝛼#𝑇 = 𝛼#𝑇8 , 𝑇 0 = 100, 𝑇 1 = 0, 𝑇8 = 0

While the fourth-order methods demonstrates
better accuracy it involves solving 
a penta-diagonal system of equations.
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Derivative boundary conditions on the right

When the equilibrium method is used to solve a boundary-value problem 
with a derivative boundary condition, a finite difference procedure must 
be developed to solve for the value of the function at the boundary where 
the derivative boundary condition is imposed. 

The finite difference approximation for Dirichlet boundary conditions

1 −
∆𝑥
2
𝑃3 𝑦30" + −2 + ∆𝑥#𝑄3 𝑦3 + 1 +

∆𝑥
2
𝑃3 𝑦3." = ∆𝑥#𝐹3

Assume that point 𝑛 is the last point of interest, and the 𝑛 + 1 is the right 
boundary point. 

With the Dirichlet boundary condition we have 𝑦9." , now we have 𝑦9."! .

How to update the FDA for given 𝑦9."! ?
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From 𝑦XYZ[  to 𝑦XYZ
We can use Newton’s backward difference polynomial for the first 
derivative at 𝑛 + 1 to connect it to the value of the function at the same 
point. 

1. First-order 
𝑦9." = 𝑦9 + ∆𝑥𝑦9."!

this is 𝑂(∆𝑥) accuracy, but if the solution is well behaved then there is 
no problem

2. Second-order  

𝑦9." =
1
3
4𝑦9 − 𝑦90" + 2∆𝑥𝑦9."!

3. Third-order

𝑦9." =
1
11

(18𝑦9 − 9𝑦90" + 2𝑦90# + 6∆𝑥𝑦9."! )

Generally the second-order method provides the best results since it’s 
accuracy is the same as the second-order FDA – same order ∆𝑥 # 32
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Derivative boundary conditions on the left

On the left side we can use Newton’s forward difference polynomial for 
the first derivative at 𝑖 = 0 to connect it to the value of the function at the 
same point. 

Good practice exercises:

1. Update the FDA system of equations when the derivative boundary 
condition is given for the right boundary point.

2. Update the FDA system when the derivative condition is given for the 
left boundary point.
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Example 4a: Dirichlet boundary condition

𝑦 !! + 2𝑦 ! + 5𝑦 = 𝑒0* ,	
𝑦 0 = 0, 𝑦 2 = 0
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Example 4b: The derivative condition on the right

𝑦 !! + 2𝑦 ! + 5𝑦 = 𝑒0* ,	
𝑦 0 = 0, 𝑦′ 2 = 0
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Example 4c: The derivative condition on the left

𝑦 !! + 2𝑦 ! + 5𝑦 = 𝑒0* ,	
𝑦′ 0 = 0, 𝑦 2 = 0
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Boundary conditions at infinity

Occasionally one boundary condition is given at infinity.

In such a case, the boundary conditions might be 
𝑦 0 = 𝐴, 𝑦 ∞ = 𝐵.

There are two procedures for implementing boundary conditions at 
infinity: finite domain and asymptotic solution
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Boundary conditions at infinity

Finite domain: 

In this approach, the boundary condition at 𝑥 = ∞ simply replaced by the 
same boundary condition applied at a finite location, 𝑥 = 𝑋. 
Thus 𝑦 ∞ = 𝐵 → 𝑦(𝑋).
The major problem with this approach is determining what value of 𝑋, if 
any, yields a reasonable solution to the original problem. 

In most cases, our interest is in the near the region far away from infinity. 
In that case, successively larger values of 𝑋, denoted by 𝑋" , 𝑋# , etc., can 
be chosen, until successive solutions in the region of interest change by 
less than some prescribed tolerance. 
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Boundary conditions at infinity

Asymptotic solution: 

A second approach for implementing boundary conditions at infinity is 
based on an asymptotic solution for large values of 𝑥. In many problems, 
the behavior of the solution near 𝑥 → ∞ is much simpler than the 
behavior in the near region, and the simplified differential equation can be 
solved exactly, including the boundary condition at infinity, to yield the 
solution 𝑦:;<=>. 𝑥 = 𝐹 𝑥 .
The boundary condition for the solution of the original differential 
equation is determined by choosing a finite location, 𝑥	 = 	𝑋, and using it 
as boundary condition at 𝑋 as 𝐹 𝑋 = 𝑌
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Nonlinear ODEs

While the shooting method works well for both linear and non-linear 
ODE, the equilibrium method is only practical for linear ODE. 

Otherwise we need to solve a system of nonlinear FDA equations using, 
for example, the Newton’s method. In this case we need to have a good 
initial guess.
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Summary for the equilibrium method

Pro

• Boundary conditions are automatically satisfied

• The method is good for complicated or delicate boundary conditions

Con

• A system of FDA equations should be solved

• Achieving higher than second-order accuracy demands solving a 
system of many FDA equations

• Non-linear ODEs yields a system of non-linear FDA equations (hard to 
solve)

• The method needs special handling for non-uniform grids.

41

41

Part 4: 

Eigenvalue problem

42
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Major methods for the boundary value problem

Eigenproblems arise in equilibrium problems in which the solution 
exists only for special values (i.e., eigenvalues) of a parameter of the 
problem. 

Eigenproblems occur when homogeneous boundary-value ODEs also 
have homogeneous boundary conditions. 

The eigenvalues are to be determined in addition to the solutions. 

Example: 

𝑑#𝑦
𝑑𝑥#

+ 𝑘#𝑦 = 0, 	 𝑦 0 = 0, 	𝑦 1 = 0

The solutions for 𝑦(𝑥) exist only for 𝑘 = ±𝑛𝜋, 𝑛 = 1, 2, …	

There are two principal methods for solving eigenproblems

1. Equilibrium method (most general)

2. Shooting method (less powerful than equilibrium methods, but 
works well with higher accuracy for some problems in physics)

43

43

More on the stationary Schrodinger equation

Stationary Schrodinger equation

−
ℏ#

2𝑚
𝑑#𝜓 𝑥
𝑑𝑥#

+ 𝑉 𝑥 − 𝐸 𝜓 𝑥 = 0

Two principal types of solutions

Type 1: Bound states - a particle is bound, i.e. it is confined to some 
finite region of space. 

For short-range potentials*: 𝜓 𝑥 → 𝑒0 # @ 	 (𝑥 → ∞)

For large |𝑥| we can set 𝜓 𝑥%8)A = 0, 𝜓 𝑥B3CDA = 0

*A short-range potential 𝑉 𝑥 ~ ⁄𝐶 𝑥#.E 𝜇 ≥ 0 . 
A Coulomb potential is a long-range potential with different asymptotic 
behavior.

Type 2: Continuum states (oscillating wave functions)

We will concentrate on solutions for bound states.
44

44

Part 4: 

Methods based on FDM

45

Part 4a: 

Equilibrium method

46

The equilibrium method for Schrodinger equation

While the equilibrium method can be easily applied to a general linear 
ODE, we will concentrate on solving the stationary Schrodinger 
equation

Using atomic units (also called Hartree units) we can write

𝑑#𝑦
𝑑𝑥#

+ 2 𝐸 − 𝑉(𝑥) 𝑦 = 0

For bound states with imply the homogeneous boundary conditions

𝑦(𝑥%8)A) = 0, 𝑦(𝑥B3CDA) = 0.

47

47

Using the finite difference approximation 

Discretizing the continuous domain into a discrete finite difference grid 

and using the second-order central difference for the derivative

𝑑#𝑦
𝑑𝑥#

≈
𝑦3." − 2𝑦3 + 𝑦30"

ℎ#

we have for the stationary Schrodinger equation

𝑦3." − 2𝑦3 + 𝑦30"
ℎ#

+ 𝐸 − 𝑉(𝑥3) 𝑦3 = 0

with the homogeneous boundary conditions

𝑦$ = 0, 𝑦9." = 0.

48

48
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Transforming to the eigenvalue problem

Rearranging the terms we get classical eigenvalue problem 𝐴𝑥 = 𝜆𝑥
in linear algebra

−
𝑦3."
2ℎ#

+ 𝑦3
1
ℎ#

+ 𝑉 𝑥3 −
𝑦30"
2ℎ#

= 𝐸𝑦3

where the diagonal elements are  𝑑33 =
"

D(
+ 𝑉 𝑥3

and non-diagonal elements 𝑎30" = 𝑎3." = − "

#D(

Then we can use one of methods for solving the eigenvalue problem to 
find values of 𝐸3 	(𝑖 = 1, 𝑛) and corresponding eigenfunctions.

Note that 𝑛 is the number of grid points.

Attention: Solutions for 𝐸3 < 𝑉 𝑥 |*→G  
corresponds  to bound states. The rest 
represents pseudo-continuum states*.

49

49

Example for n=4

Assume that we need to find a solution using this grid

with 𝑦$ = 0 and 𝑦6 = 0. Then the system is

We can use the Jacoby method for symmetric matrices, or QR method, 
or a method from well-established numerical library

50

50

Example: MatLab code

function [x,y,Ei,nstates] = QMSch01(Vp,Xmin,Xmax,n)
% =========================================================
% Solver for stationary Schrodinger equation
% Version: November 2021
% =========================================================
%{
IN:
    Vp      - external function (potential)
    Xmin    - left end-point
    Xmax    - right end-point
    n       - number of endpoint
OUT:
    x       - set of grid points
    y       - eigenvectors corresponding to eigenvalues
    Ei      - diagonal matrix of eigenvalues
    nstates - number of bound states
%}
% 1: preparation
h = (Xmax - Xmin)/(n-1);
a = zeros(n,n);
x = zeros(n,1);
S = zeros(n,1);
Vplot = zeros(n,1); 51

51

Example: MatLab code

% 2: Calculate the matrix a(i,j)
% grid points and the diagonal elements
for k = 1:n
    x(k) = Xmin + h*(k-1);
    a(k,k)   = 1.0/h^2 + Vp(x(k));
    Vplot(k)   = Vp(x(k));
end
%  +/- non-diagonal elements
for k=1:n-1
    a(k,k+1) = (-1.0)/(2*h^2);
    a(k+1,k) = a(k,k+1);
end

% 3. Calculating eigenvalues and eigenvectors
% === solver - eigenvalues and eigenvector (Matlab function)
[y,Ei] = eig(a);
% === end solver

% 4. sorting eigenvalues (and eigenvectors) in in ascending order
% attention - Matlab function eig may not always sort
[dwork,ind] = sort(diag(Ei));
EiSort = Ei(ind,ind);
ySort  = y(:,ind); 52

52

Example: MatLab code

Ei = EiSort;
y  = ySort;
% end of sorting

% 5. count bound states
Emax = Vp(Xmax);
nstates = 0;
for k = 1:n
    if Ei(k,k) > Emax
        break
    end
    nstates = nstates+1;
end

53

53

Example: MatLab code

% 6. Normalization
% Normalization integral so that |y(x)|^2 dx =1 (method: Simpson)
% note: normalization for the first m functions
for i = 1:nstates
    S(i) = 0.0;
    for k = 2:2:n-1
        S(i) = S(i) + 4.0*y(k,i)*y(k,i);
        S(i) = S(i) + 2.0*y(k+1,i)*y(k+1,i);
    end
    S(i) = S(i) + y(1,i)*y(1,i) - y(n,i)*y(n,i);
    S(i) = sqrt(S(i)*h/3.0);
end
% Normalization
for i=1:nstates
    for k=1:n
        y(k,i) = y(k,i)/S(i);
    end
end

54

54
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Example: MatLab code

% 7. plot the potential
Vmin = min(Vplot);
Vmax = max(Vplot);
figure (1)
plot(x,Vplot,'k','LineWidth',1.2);
title('Potential');
xlabel('x');
ylabel('V(x)');
ylim([Vmin-1. Vmax*1.2+1.])
end

55

55

Example 5a: Stationary Schrodinger equation

Energies of bound states  
    i     Energy          Analytic solutions
    1    -3.778856        -3.77791
    2    -3.123640        -3.11995
    3    -2.065921        -2.05806
    4    -0.706421        -0.69467 56

-8 -6 -4 -2 0 2 4 6 8
x

-5

-4

-3

-2

-1

0

1

V(
x)

Potential

-8 -6 -4 -2 0 2 4 6 8
x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
x)

Wave functions

56

Example 5b: Stationary Schrodinger equation

first 7 out of   18 states 
    i     Energy  
    1     0.499997 
    2     1.499984 
    3     2.499959 
    4     3.499922 
    5     4.499872 
    6     5.499809 
    7     6.499734 57
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Example 5c: Stationary Schrodinger equation

first 7 out of   7 states (note that eigenlevels are in two bands)
    i     Energy  
    1    -4.543076 
    2    -4.394130 
    3    -4.162973 
    4    -3.885428 
    5    -3.635264 
    6    -0.496734 
    7    -0.139594 58
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Example 5d: Stationary Schrodinger equation

first 8 out of   12 states 
    i     Energy  
    1     0.808594 
    2     1.855739 
    3     2.578056 
    4     3.244557 
    5     3.825692 
    6     4.382126 
    7     4.895134 
    8     5.401913 
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Observation 

1. For a symmetric potential, 𝑉 𝑥 = 𝑉(−𝑥) the solutions are either 
even or odd, that is, the wave function has definite parities. 

2. Accuracy for states closer to the continuum is lower due to mixing 
with pseudo-continuum states

60

60
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Example 5d: Stationary Schrodinger equation

 first  4 out of    4 states 
    i     Energy  
    1    -7.872870 
    2    -4.376419 
    3    -1.895208 
    4    -0.439901 

* Morse potential
61
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Part 4b: 

Shooting method

62

The shooting method for Schrodinger equation

The idea is close to the shooting method for a regular boundary value 
problem. 

We choose some 𝑥=39  and 𝑥=:*  as 
interval of integration of the ODE.
We set the boundary conditions as 
𝑦 𝑥=39 = 0, 𝑦 𝑥=:* = 0

Since for bound states asymptotically  𝑦(𝑥)~𝑒0E|*| then for 
𝑦′(𝑥)~𝜇𝑒0E|*| where 𝜇 = 2𝐸 (𝐸 is the energy)
Attention (watch the signs of the derivatives for even and odd states)

Then we guess a value of 𝐸 and integrate from 𝑥=39  to 𝑥=:* , and check 
if we satisfy the boundary condition on the right. And we keep adjusting 
𝐸 till it works.

63

63

Serious complication

There are two mathematical solutions at 𝑥 → ∞, 

𝑦 𝑥 ~𝐴𝑒0E* + 𝐵𝑒E*

one is exponentially decaying (physical solutions), and the second 
solution is exponentially increasing (numerically dominant).

A small error (accuracy or round-off) will be exponentially magnified.

64

64

Algorithm for the shooting method

1. Choose 𝑥=39 , 𝑥=:*  and some 𝑥$  

2. Guess some 𝐸=39  and 𝐸=:*  (looking for 𝐸 in between) 

3. And solve the ODE for 𝐸	and 𝐸=:*

a) from the left:  𝑥=39  to 𝑥$  to get 𝑦%(𝑥$) and 𝑦%
! 𝑥$

b) then from the right:  𝑥=:*  to 𝑥$  to get 𝑦B(𝑥$) and 𝑦B! 𝑥$
4. We want a smooth connection between the two solution, therefore 

instead of the logarithmic derivatives
⁄𝑦%

!(𝑥$) 𝑦%(𝑥$) = ⁄𝑦B! 𝑥$ 𝑦B(𝑥$) it is preferable to use the difference 
in logarithmic derivatives as

∆=
⁄𝑦%

!(𝑥$) 𝑦%(𝑥$) − ⁄𝑦B! 𝑥$ 𝑦B(𝑥$)
⁄𝑦%!(𝑥$) 𝑦%(𝑥$) + ⁄𝑦B! 𝑥$ 𝑦B(𝑥$)

5. If ∆@ s ∆@=:*> 0 then 𝐸=:* = 𝐸 otherwise 𝐸=39 = 𝐸 
and repeat steps 1-4 till given tolerance.

Note: The Numerov algorithm is a very good choice for solving ODEs 65

65

Example: MatLab code
function [Ei] = Qwell02(Xmin,Xmax,X0,N,Emin,Emax,eps,state)
%{
Solving stationary Schrodinger equation
y'' + 2(E-V(x))y = 0
METHOD: shooting method + Runge-Kutta 4th as initial value problem
CALLS: rk4_2d(x,y,dy,n), ypp(x,y,dy), V(x) (potential)
INPUT: 
  V(X) - a potential (as a function, so far the name is fixed)
  XMIN, XMAX - left and right endpoints for integration
  X0 - "meeting point" (results should not depend on it)
  N  - number of points for the whole interval
  Emin, Emax - energy interval for searching an energy level
  eps - tolerance on matching the log derivative at X0
  state - parity (+1 for odd states and -1 for even states
OUTPUT:
  Ei - eigenvalue (energy)
Additional output (in the function)
Plot 1: matching (left/right) wavefunctions and derivatives
Plot 2: Wavefunction (normalized)
%}
global Ee
MaxIter = 128;            % Max number of iterations
% Working arrays
Delta = zeros(MaxIter,1);
E     = zeros(MaxIter,1);
Vp    = zeros(N,1); 66

66
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Example: MatLab code
% Phase 1: Prepare arrays x,y xl,yl, xr,yr(left and righ)
h = (Xmax - Xmin)/(N-1);
N0 = ceil((X0-Xmin)/h) + 1;
Nl = N0;
Nr = N - N0 +1;

% reserve arrays
x  = zeros(N,1);
y  = zeros(N,1);

xl  = zeros(Nl,1);
yl  = zeros(Nl,1);
dyl = zeros(Nl,1);

xr  = zeros(Nr,1);
yr  = zeros(Nr,1);
dyr = zeros(Nr,1);

% grid points for x, xl and xr
for k = 1:N
    x(k) = Xmin + h*(k-1);
end
for k=1:N0
    xl(k) = x(k);
end
for k=N:-1:N0
    kr = N-k+1;
    xr(kr) = x(k);
end

% Phase 2: Prepare first three energies (initialization)
E(1) = Emin;
E(2) = Emax;
E(3) = (Emin+Emax)/2;

% Phase 3: the main loop (iterations)

for k = 1:MaxIter
    Ee = E(k);
    b = sqrt(2.0*abs(Ee));
    
%3a Integration from the left to X0
    % initial position and the derivative on the left
    yl(1)  = exp(-b*abs(xl(1)));        
    dyl(1) = b*yl(1);
    [yl,dyl] = rk4_2d(xl,yl,dyl,Nl);

%3b Integration from the right to X0
    % initial position and the derivative on the right
    yr(1) = state*exp(-b*abs(xr(1)));
    dyr(1) = (-1.0)*b*yr(1);
    [yr,dyr] = rk4_2d(xr,yr,dyr,Nr);

%3C Calculating the log derivative difference between the two solutions
    Lelt  = dyl(N0)/yl(N0);
    Right = dyr(Nr)/yr(Nr);
    Delta(k) = (Lelt-Right)/(Lelt + Right);

% print iterations if needed
    if k == 1 % print the header
        fprintf(' Iter   Energy      Match \n')
    end
    fprintf(' %3i   %8.6f  %10.2e \n',k,Ee,Delta(k))
    
    
%3d when k=2 check if there is a solution 
    if k == 2
        if Delta(1)*Delta(2) > 0
            fprintf(' No solution for given Emin and Emax \n')
            Ei = 0.0;
            return
        end
    end
    
    
%3E bisectional search for the root
% Attention: the bisectional method may converge not only to a root 
% of a function f(x)=0 but to a discontinuity, then change the matching
% point X0.
    if k >= 3
        if Delta(1)*Delta(k) < 0.0
            E(2) = E(k);
        else
            E(1) = E(k);
            Delta(1) = Delta(k);
        end
        E(k+1) = (E(1)+E(2))/2.0;
        if abs(Delta(k)) < eps 
%        if abs(E(1)-E(2)) < eps    
            Ei = E(k);
            break
        end
    end   % end bisectional search
               
end % end iterations

if k == MaxIter
    fprintf(' Max iterations - still no solution \n')
    Ei = 0.0;
    return
end
    
figure (1)
plot(xl,yl,'b',xr,yr,'r',xl,dyl,'-m',xr,dyr,'-k')
title('Matching functions and derivatives')
grid

% Phase 4: Assembling the whole wave function + normalization 

% 4a  One function y(x) as a sum of two solutions (left + right)
Ynorm = yr(Nr)/yl(N0);
for k = 1:N0
    x(k) = xl(k);
    y(k) = yl(k)*Ynorm;
end
for k = 1:Nr
    x(N-k+1) = xr(k);
    y(N-k+1) = yr(k);
end

% 4b  Calculating Integral |y(x)|^2dx for normalization
Sn = 0.0;
for k = 2:2:N-1
    Sn = Sn + 4.0*y(k)*y(k);
    Sn = Sn + 2.0*y(k+1)*y(k+1);
end
Sn = Sn + y(1)*y(1) - y(N)*y(N);
Sn = sqrt(Sn*(h/3.0));
% 4c Normalization
for k = 1:N
    y(k) = y(k)/Sn;
    Vp(k) = V(x(k));
end

figure (2)
plot(x,y,'r')
%plot(x,y,'r',x,Vp,'b')
str = sprintf('Wave function for Ei = %6.4f',Ei);
title(str);

67

67

Example: MatLab code
% Phase 1: Prepare arrays x,y xl,yl, xr,yr(left and righ)
h = (Xmax - Xmin)/(N-1);
N0 = ceil((X0-Xmin)/h) + 1;
Nl = N0;
Nr = N - N0 +1;

% grid points for x, xl and xr
for k = 1:N
    x(k) = Xmin + h*(k-1);
end
for k=1:N0
    xl(k) = x(k);
end
for k=N:-1:N0
    kr = N-k+1;
    xr(kr) = x(k);
end

% Phase 2: Prepare first three energies (initialization)
E(1) = Emin;
E(2) = Emax;
E(3) = (Emin+Emax)/2;

68

68

Example: MatLab code
% Phase 3: the main loop (iterations)

for k = 1:MaxIter
    Ee = E(k);
    b = sqrt(2.0*abs(Ee));
    
%3a Integration from the left to X0
    % initial position and the derivative on the left
    yl(1)  = exp(-b*abs(xl(1)));        
    dyl(1) = b*yl(1);
    [yl,dyl] = rk4_2d(xl,yl,dyl,Nl);

%3b Integration from the right to X0
    % initial position and the derivative on the right
    yr(1) = state*exp(-b*abs(xr(1)));
    dyr(1) = (-1.0)*b*yr(1);
    [yr,dyr] = rk4_2d(xr,yr,dyr,Nr);

%3C Calculating the log derivative difference between the two solutions
    Lelt  = dyl(N0)/yl(N0);
    Right = dyr(Nr)/yr(Nr);
    Delta(k) = (Lelt-Right)/(Lelt + Right);
    
    

69

69

Example: MatLab code
%3d when k=2 check if there is a solution 
    if k == 2
        if Delta(1)*Delta(2) > 0
            fprintf(' No solution for given Emin and Emax \n')
            Ei = 0.0;
            return
        end
    end        
%3E bisectional search for the root
% Attention: the bisectional method may converge not only to a root 
% of a function f(x)=0 but to a discontinuity, then change the matching
% point X0.
    if k >= 3
        if Delta(1)*Delta(k) < 0.0
            E(2) = E(k);
        else
            E(1) = E(k);
            Delta(1) = Delta(k);
        end
        E(k+1) = (E(1)+E(2))/2.0;
        if abs(Delta(k)) < eps 
%        if abs(E(1)-E(2)) < eps    
            Ei = E(k);
            break
        end
    end   % end bisectional search
end % end iterations

70

70

Example: MatLab code
if k == MaxIter
    fprintf(' Max iterations - still no solution \n')
    Ei = 0.0;
    return
end
    
figure (1)
plot(xl,yl,'b',xr,yr,'r',xl,dyl,'-m',xr,dyr,'-k')
title('Matching functions and derivatives')
grid

% Phase 4: Assembling the whole wave function + normalization 

% 4a  One function y(x) as a sum of two solutions (left + right)
Ynorm = yr(Nr)/yl(N0);
for k = 1:N0
    x(k) = xl(k);
    y(k) = yl(k)*Ynorm;
end
for k = 1:Nr
    x(N-k+1) = xr(k);
    y(N-k+1) = yr(k);
end

71

71

Example: MatLab code
% 4b  Calculating Integral |y(x)|^2dx for normalization
Sn = 0.0;
for k = 2:2:N-1
    Sn = Sn + 4.0*y(k)*y(k);
    Sn = Sn + 2.0*y(k+1)*y(k+1);
end
Sn = Sn + y(1)*y(1) - y(N)*y(N);
Sn = sqrt(Sn*(h/3.0));
% 4c Normalization
for k = 1:N
    y(k) = y(k)/Sn;
    Vp(k) = V(x(k));
end

figure (2)
plot(x,y,'r')
%plot(x,y,'r',x,Vp,'b')
str = sprintf('Wave function for Ei = %6.4f',Ei);
title(str);
grid

end %end function

72
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Example 6: Potential well

function Vx = V(x)
a = 2.0;
if abs(x) <= a
    Vx = -4.0;
else
    Vx = 0.0;
end

    i     Analytic   FDM  Shooting
    1    -3.77791   -3.778856 -3.778227 
    2    -3.11995   -3.123640    -3.121178
    3    -2.05806   -2.065921 -2.060667
    4    -0.69467   -0.706421    -0.698546 
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The Numerov method

While Runge-Kutta methods (RK- 4th order or RKF45) works very well 
for solving ODEs, there is a powerful method for solving second-order 
ODEs that don’t have first derivative.

We consider equation

𝑑#𝑦
𝑑𝑥#

+ 𝑘# 𝑥 𝑦 = 𝑆(𝑥)

The power of the Numerov method is to get extra precision in the 
second derivative by taking advantage of there being no first derivative 
in equation above.

74

74

The Numerov method

The Taylor series for the function 𝑦(𝑥) at the points 𝑖 + 1 and n 𝑖 − 1	

𝑦3." = 𝑦3 + 𝑦3
!ℎ +

1
2
𝑦3
!!ℎ# +

1
6
𝑦3
!!!ℎ4 +

1
24

𝑦3
!!!!ℎ5 + ⋯

𝑦30" = 𝑦3 − 𝑦3
!ℎ +

1
2
𝑦3
!!ℎ# −

1
6
𝑦3
!!!ℎ4 +

1
24

𝑦3
!!!!ℎ5 − ⋯

𝑦3." + 𝑦30" = 2𝑦3 + 𝑦3
!!ℎ# +

1
12

𝑦3
!!!!ℎ5 + ⋯

Then

𝑦3
!! =

𝑦3." − 2𝑦3 + 𝑦30"
ℎ#

−
1
12

𝑦3
!!!!ℎ#

At the same time from the differential equation   I
(<

I*(
+ 𝑘# 𝑥 𝑦 = 𝑆(𝑥)

𝑦3
!!!! =

𝑑#

𝑑𝑥#
v−𝑘# 𝑥 𝑦 + 𝑆 𝑥  
*J*K
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The Numerov method

Using the second-order central difference for the second-order 
derivatives for −𝑘# 𝑥 𝑦 + 𝑆 𝑥  we have

𝑦3
!!!! = −

𝑘#𝑦 3." − 2 𝑘#𝑦 3 + 𝑘#𝑦 30"

ℎ#
+
𝑆3." − 2𝑆3 + 𝑆30"

ℎ#

then 

𝑦3!! =
𝑦3." −2𝑦3 +𝑦30"

ℎ# −
1
12𝑦3

!!!!ℎ# =

𝑦3." −2𝑦3 +𝑦30"
ℎ# +

1
12ℎ

# 𝑘#𝑦 3." −2 𝑘#𝑦 3 + 𝑘#𝑦 30"

ℎ# +
𝑆3." −2𝑆3 +𝑆30"

ℎ#

and the equation 𝑦!! =−𝑘# 𝑥 𝑦 +𝑆 𝑥  reads

𝑦3." −2𝑦3 +𝑦30"
ℎ# +

1
12ℎ

# 𝑘#𝑦 3." −2 𝑘#𝑦 3 + 𝑘#𝑦 30"

ℎ# +
𝑆3." −2𝑆3 +𝑆30"

ℎ#

=− 𝑘#𝑦 3 	+ 𝑆3 	

Rearranging the terms we have
76

76

The Numerov method

𝑦3." 1+
ℎ#

12𝑘3."
# −2𝑦3 1−

5ℎ#

12 𝑘3
# +𝑦30" 1+

ℎ#

12𝑘30"
#

=
ℎ#

12 𝑆3." +10𝑆3 +𝑆30" +𝑂 ℎ7

We see that the Numerov method uses the values of 𝑦(𝑥) at the two 
previous steps 𝑥3  and 𝑥30"  to move 𝑦 forward to 𝑥3." . 

The Numerov methods is a three-point recursion relation.

It is stable and has a local error ~𝑂(ℎ7) the same as RKF45. We need 
six calls for RKF45 and only one call for the Numerov method. 
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The Numerov method

Two issues: 

1) the method is not self-starting, however, we can use the asymptotic 
behavior

2) the method does not provide first derivatives on its own. But we 
need them when matching the wave functions. We can calculate 
the first derivative using the central difference formula or more 
precisely

𝑦3
! =

1
2ℎ

1 +
ℎ#

12
𝑘3."
# 𝑦3." − 1 +

ℎ#

12
𝑘30"
# 𝑦30" + 𝑂(ℎ5)

Summary for the Numerov method:

The speed gain for shooting with Numerov’s method is significant. We 
can use it to extend calculations to systems requiring large number of 
grid points. 78

78
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Finite difference approximation or the Shooting method?

1. The shooting method results are more accurate than the FDM 
results, especially for states closer to continuum. 
Note that the accuracy either RK45 or Numerov’s is higher than 
second-order central difference for FDM

2. The shooting method can be used for non-homogeneous boundary 
conditions

3. But the FDM is much simpler to use and can produce bound states 
en masse. 

79
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Part 5 

Other methods (not based on FDM)

80

More methods I: Final Element Method

Final element method - very powerful for solving Partial Differential 
Equations. 

It can be used for solving Schrodinger equation too.
FEM breaks space up into multiple geometric objects (elements), 
determine approximate solution for each element, and then match the 
solutions up at the element edges.
Much more powerful than FDM but MUCH more work required.
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More methods II: Basic expansion method

The idea – expand the unknown function on a finite basis set

The method is very popular for structure calculations in multi-electron 
systems. It’s often called as Configuration Interaction method. 

There are very many variants of the method.
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More methods III: Variational methods

The idea – the exact wavefunction gives the lowest energy for the 
ground state 

𝐸$ =
𝜓$ 𝑟 x𝐻 𝜓$ 𝑟
𝜓$ 𝑟 |𝜓$ 𝑟

The variational method can be adapted to give bounds on the energies 
of excited states (under certain conditions). 

There are many versions of the method: Hartree-Fock method, 
Variational Monte-Carlo method
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Variational Monte Carlo method

The objective is finding 𝜓(𝑥) that minimize

𝐸$ =
𝜓$ 𝑥 x𝐻 𝜓$ 𝑥
𝜓$ 𝑥 |𝜓$ 𝑥

=
𝜓$ 𝑥 − 12 ∇

# + 𝑉(𝑥) 𝜓$ 𝑥

𝜓$ 𝑥 |𝜓$ 𝑥

Steps:

1. Choose a trial function 𝑦A(𝑥) and discretize space into bins ∆𝑥 size

2. Choose randomly a “bin 𝑖” (or 𝑥3  value) and create a provisional 
function 𝑦>(𝑥) by changing 𝑦A 𝑥  function in 𝑥3  location by an 
amount chosen randomly ±𝑑𝑦-  using Monte Carlo

3. Calculate 𝐸> . If it is lover that 𝐸A  with 𝑦A  then accept the provisional 
function, if it is higher that 𝐸A  then discard the provisional function 

4. Keep doing 2 and 3 till desired tolerance is reached

Note: Use Metropolis method to accept/reject solutions with 𝐸> > 𝐸A
84
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Example: MatLab code
% !================================================================
% ! Monte Carlo interactive procedure to minimize energy
% ! by varying randomly f(i) and random point x(i)
% !================================================================
function [f,energy, hits] = norfolk(x,f,df,ei,n,tests)

hits = 0;

for i = 1: tests
  %k = 2 + floor(rand*(n-2));
  k = 1+ randi(n-3);
  fold = f(k);                            
  f(k) = f(k) + 2.0*(rand-0.5)*df;
  ef =  hamilton(x,f,n);
  if ef < ei
      ei = ef;
      f = fnorm(x,f,n);
      hits = hits + 1;
      else        
      f(k) = fold;       
  end
end
energy = ei;
end % norfolk
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Example: MatLab code
%================================================
% compute <f|H|f>/<f|f> for a given x(i) and f(i)
%================================================
function energy = hamilton(x,f,n)

energy = 0.0;
sum = 0.0;
dx = x(2)-x(1);

for i=2:n-1
  potential = V(x(i));
  energy = energy + dx*potential*f(i)*f(i);
  energy = energy - dx*(0.5/dx*dx)*f(i)*(f(i+1)-2.0*f(i)+f(i-1));
  sum = sum + f(i)*f(i)*dx;
end
energy = energy / sum;
end % hamilton

86

86

Example: MatLab code
%=============================================
% normalization, so that |<f|f>|**2 = 1.0
%=============================================
function f = fnorm(x,f,n)

%f=zeros(n,1);

sum = 0.0;
dx  = x(2)-x(1);

for i=2:n-1
  sum = sum + dx*f(i)*f(i);
end

for i=2:n-1
  f(i) = f(i)/ sqrt(sum);
end

end
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Example: Potential well

function Vx = V(x)
a = 2.0;
if abs(x) <= a
    Vx = -4.0;
else
    Vx = 0.0;
end

Analytic solutions: -3.77791

Final energy      -3.78169 
Variations:        2*106
Success variations  0.007
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Example: Harmonic oscillator

Analytic solutions: 0.50000
Final energy        0.50039
Variations:         2*106
Success variations  0.012

The method has lower accuracy but it can be
1. accelerated by better guesses for trial wave functions
2. extended to multidimension (multiparticle) systems
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More methods IV: Density Functional Theory

Nobel Prize 1998

The method gives energy levels (mostly ground state energies) without 
calculating wave functions! 
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