
1

Nonlinear Equations
A. Godunov

1. Prelude
2. Closed domain methods
3. Open domain methods
4. Roots of polynomials
5. Systems of nonlinear equations

1

Part 1:

Prelude to the problem

2

Non-linear vs. linear equation.

Very many problems in physics require a solution of non-linear equation
or function. And non-linear equations are much harder to solve.

Examples:
A system of linear equations vs. a system of non-linear equations, a
linear ordinary differential equation vs. a non-linear ODE, etc.

Very often we try to transform a nonlinear problem to a linear one by
using proper approximations.

However, very many nonlinear problems cannot be linearized without
losing the essence of physics behind.

3

3

Nonlinear vs. linear equation.

In this lecture we consider as simple as possible form of nonlinear
equations, namely a nonlinear function of one variable 𝑓 𝑥 = 0.

Statement of the problem:

Given the continuous nonlinear function 𝑓(𝑥), find the value(s) 𝑥 = 𝑐
such that 𝑓 𝑐 = 0

The non-linear function 𝑓(𝑥) can be

• an algebraic equation

• a transcendental equation

• a solution of a differential equation

• ... any non-linear equation

4

4

Examples

Simple equations of one variable

𝑥! − 6𝑥 + 9 = 0
𝑥 − cos 𝑥 = 0

exp 𝑥 ln(𝑥!) − 𝑥 cos 𝑥 = 0

Quantum mechanics: Solutions of the Schrodinger equation for a finite
square well 𝑈 𝑥 = −𝑈" for 𝑥 < 𝑎, can be found from the following
non-linear equations (for even and odd states

𝑈" − |𝐸| tan 2𝑚 𝑈" − 𝐸 ⁄𝑎! ℏ! = 𝐸

𝑈" − |𝐸| cot 2𝑚 𝑈" − 𝐸 ⁄𝑎! ℏ! = − 𝐸

In textbooks these equations are solved only graphically.

5

5

Solutions of nonlinear functions

a) a single real root

b) no real roots exist (but complex roots may exist)

c) two simple roots

d) three simple roots
6

6

2

Solutions of nonlinear functions (cont.)

e) two multiple roots

f) three multiple roots

g) one simple root and two multiple roots

h) multiple roots
7

7

Prelude for root finding

1. All non-linear equations can only be solved iteratively.

2. We must guess an approximate root to start an iterative procedure.

The better we guess, the more chances we have to find the right root in
shorter time.

8

8

Bounding and refining

There are two distinct phases in finding the solution of at nonlinear
equation.

1. Bounding the solution

2. Refining the solution

9

9

10

Phase 1
Bounding the Solution

1. Graphing the function
2. Incremental search
3. Past experience with the

problem or a similar one
4. Solution of a simplified

approximate model
5. Previous solution in a

sequence of solutions

Bounding the solution involves finding a
rough estimate of the solution that can be
used as the initial approximation, in an
iterative procedure that refines the
solution to a specified tolerance.

If possible, the root should be bracketed
between two points at which the value of
the nonlinear function has opposite signs.

"The hardest thing of all is to find a black cat in a dark room, especially if there is
no cat.“ Confucius (551-479 AD)

10

11

Two types of methods:

1. Closed domain
(bracketing) methods

2. Open domain
(non-bracketing) methods

Iterative refining the solution involves
determining the solution to a specified
tolerance by a systematic procedure.

Phase 2
Iterative Refining the

Solution

There are numerous pitfalls in finding
the roots of nonlinear equations.

Important question:
How to stop an iteration?

1i1i

1i

1i

 use never error rel.

 error abs.

++

+

+

-
-

-

g
g

g
gg

gg

ii

i

1

11

Part 2:

Closed domain methods

12

3

Closed Domain (Bracketing) Methods

Methods start with two values of 𝑥 which bracket the root in the interval
𝑎, 𝑏 .

If 𝑓(𝑎) and 𝑓(𝑏) have opposite signs, and if the function is continuous,
then at least one root must be in the interval.

Most common closed domain methods:

• Interval halving (bisection)

• False position (regula falsi)

Bracketing methods are robust
(they are guaranteed to obtain a solution
since the root is trapped in the closed interval).

13

13

2.1 Bisectional method

The simplest but the most robust method!

1. let 𝑓(𝑥) be a continuous function on [𝑎, 𝑏]

2. let 𝑓(𝑥) changes sign between 𝑎 and 𝑏, 𝑓(𝑎)𝑓(𝑏) 	< 	0

Example: function

𝑓 𝑥 = 𝑥# − 2𝑥 − 2

14

14

Bisectional method - algorithm

Divide [𝑎, 𝑏] into tow equal parts with 𝑐 = ⁄(𝑎 + 𝑏) 2	 and if

𝑓 𝑎 𝑓 𝑐 E
< 0 then	there	is	a	root	in 𝑎, 𝑐 , 𝑠𝑒𝑡	𝑎 = 𝑎, 𝑏 = 𝑐
> 0 then	there	is	a	root	in 𝑐, 𝑏 , 𝑠𝑒𝑡	𝑎 = 𝑐, 𝑏 = 𝑏
= 0 	 then	c	is	the	root	

Interval halving is an iterative procedure.

The iterations are continued until

𝑏$ − 𝑎$ ≤ 𝜀% or 𝑓 𝑐$ ≤ 𝜀! 	 or both

15

15

Bisectional method – summary

• The root is bracketed within the bounds of the interval, so the method
is guaranteed to converge

• On each bisectional step we reduce by two the interval where the
solution occurs. After n steps the original interval [𝑎, 𝑏] will be reduced
to the (𝑏 − 𝑎)/2& interval. The bisectional procedure is repeated till
(𝑏 − 𝑎)/2& is less than the given tolerance (𝑏&−𝑎&) < 𝜀.
thus, 𝑛 is given by

𝑛 =
1
ln 2

ln
𝑏" − 𝑎"
𝑏& − 𝑎&

≈
1
ln 2

ln
𝑏" − 𝑎"

𝜀

• The major disadvantage of the bisection method is that the solution
converges slowly.

• The method does not use information about actual function behavior

16

16

17

double bisect(double a, double b, double eps)
{
 double xl,x0,xr;

 if(f(a)*f(b) > 0.0) return 999;

 xl = a;
 xr = b;
 while (fabs(xr - xl) >= eps)
 {
 x0 = (xr + xl)/2.0;
 if((f(xl) * f(x0)) <= 0.0) xr = x0;
 else xl = x0;
 }
 return x0;
}

Example: C++

17

18

i a f(a) b f(b) c f(c)

 1 0.00000 -1.00000 4.00000 4.65364 2.00000 2.41615
 2 0.00000 -1.00000 2.00000 2.41615 1.00000 0.45970
 3 0.00000 -1.00000 1.00000 0.45970 0.50000 -0.37758

 4 0.50000 -0.37758 1.00000 0.45970 0.75000 0.01831
 5 0.50000 -0.37758 0.75000 0.01831 0.62500 -0.18596
 6 0.62500 -0.18596 0.75000 0.01831 0.68750 -0.08533

 7 0.68750 -0.08533 0.75000 0.01831 0.71875 -0.03388
 8 0.71875 -0.03388 0.75000 0.01831 0.73438 -0.00787

 9 0.73438 -0.00787 0.75000 0.01831 0.74219 0.00520
 10 0.73438 -0.00787 0.74219 0.00520 0.73828 -0.00135
 11 0.73828 -0.00135 0.74219 0.00520 0.74023 0.00192

 12 0.73828 -0.00135 0.74023 0.00192 0.73926 0.00029
 13 0.73828 -0.00135 0.73926 0.00029 0.73877 -0.00053
 14 0.73877 -0.00053 0.73926 0.00029 0.73901 -0.00012

 15 0.73901 -0.00012 0.73926 0.00029 0.73914 0.00008
 16 0.73901 -0.00012 0.73914 0.00008 0.73907 -0.00002
 17 0.73907 -0.00002 0.73914 0.00008 0.73911 0.00003

 18 0.73907 -0.00002 0.73911 0.00003 0.73909 0.00001
 19 0.73907 -0.00002 0.73909 0.00001 0.73908 -0.00000

 20 0.73908 -0.00000 0.73909 0.00001 0.73909 0.00000
 21 0.73908 -0.00000 0.73909 0.00000 0.73908 -0.00000
 22 0.73908 -0.00000 0.73909 0.00000 0.73909 0.00000

 iterations root
 22 0.73909

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

18

4

Bisectional method and singularity

If a nonlinear equation, such as ⁄𝑓 𝑥 = 1 (𝑥 − 𝑑) which has a singularity
at 𝑥 = 𝑑, is bracketed between 𝑎 and 𝑏, interval halving will locate the
discontinuity, 𝑥 = 𝑑.

A check on 𝑓 𝑥 as 𝑥 → 𝑑 would indicate that a discontinuity, not a root,
is being found.

19

19

2.2 False position method

In the false position method, the nonlinear function 𝑓(𝑥)	is assumed to be
a linear function 𝑔(𝑥) in the interval (𝑎, 𝑏), and the root of the linear
function 𝑔(𝑥), 𝑥	 = 	𝑐, is taken as the next approximation of the root of
the nonlinear function 𝑓(𝑥), 𝑥 = 𝑐.

The root of the linear function 𝑔(𝑥), that is, 𝑥 = 𝑐, is not the root of the
nonlinear function 𝑓(𝑥). It is a false position, which gives the method its
name.

The method uses information about the function 𝑓(𝑥).

20

20

2.2 False position method - algorithm

The slope of the linear function 𝑔′(𝑥) is given by

𝑔' 𝑥 =
𝑓 𝑏 − 𝑓(𝑎)

𝑏 − 𝑎
=
𝑓 𝑏 − 𝑓(𝑐)

𝑏 − 𝑐

Setting 𝑓 𝑐 = 0 and solving for 𝑐 gives

𝑐 = 𝑏 − 𝑓 𝑏
𝑏 − 𝑎

𝑓 𝑏 − 𝑓(𝑎)

then like for bisectional method

if ⁄𝑓(𝑎) 𝑓(𝑐) < 0	 𝑎 = 𝑎, 𝑏 = 𝑐

if ⁄𝑓(𝑎) 𝑓(𝑐) > 0	 𝑎 = 𝑐, 𝑏 = 𝑏

21

21

22

double false_p(double a, double b, double eps)
{
 double xl,x0,xr;

 if(f(a)*f(b) > 0.0) return 999;

 xl = a;
 xr = b;
 while (fabs(xr - xl) >= eps)
 {
 x0 = xr - f(xr)*(xr - xl)/(f(xr)-f(xl));
 if((f(xl) * f(x0)) <= 0.0) xr = x0;
 else xl = x0;
 }
 return x0;
}

Example: C++

22

23

i a f(a) b f(b) c f(c)
 1 0.00000 -1.00000 4.00000 4.65364 0.70751 -0.05248
 2 0.70751 -0.05248 4.00000 4.65364 0.74422 0.00861
 3 0.70751 -0.05248 0.74422 0.00861 0.73905 -0.00006
 4 0.73905 -0.00006 0.74422 0.00861 0.73909 -0.00000
 5 0.73909 -0.00000 0.74422 0.00861 0.73909 -0.00000
 6 0.73909 -0.00000 0.74422 0.00861 0.73909 -0.00000
 7 0.73909 -0.00000 0.74422 0.00861 0.73909 -0.00000
 8 0.73909 -0.00000 0.74422 0.00861 0.73909 0.00000
 iterations root
 8 0.73909

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6

for bisectional method it takes 22 iterations

The false position method generally converges more rapidly than the
bisection method, but it does not give a bound on the error of the
solution.

23

Part 3:

Open domain methods

24

5

Open domain methods

Open domain methods use information about the nonlinear function itself
to refine the estimates of the root. Thus, they are considerably more
efficient than bracketing ones.

However, such methods do not restrict the root to remain trapped in a
closed interval. Consequently, they are not as robust as bracketing
methods and can actually diverge.

Most popular open domain methods

1. Newton's method

2. The secant method

3. Muller's method

25

25

3.1 Newton’s method

Newton's method exploits the derivatives 𝑓′(𝑥) of the function 𝑓(𝑥) to
accelerate convergence for solving 𝑓(𝑥) = 0.

It always converges if the initial approximation is sufficiently close to the
root, and it converges quadratically.

Its only disadvantage is that the derivative 𝑓′(𝑥) of the nonlinear function
𝑓(𝑥) must be evaluated.

26

26

Newton’s method – basics and algorithm

𝑓 𝑥 = 𝑓 𝑥" + 𝑥 − 𝑥" 𝑓 ' 𝑥" + 𝑥 − 𝑥" ! 𝑓′′(𝑥")
2!

+ ⋯

Suppose that 𝑥 is the solution for 𝑓 𝑥 = 0.

If we keep two first terms in Taylor series

𝑓 𝑥 = 0 = 𝑓 𝑥" + 𝑥 − 𝑥" 𝑓 ' 𝑥"

and then

𝑥 = 𝑥" −
𝑓 𝑥"
𝑓 ' 𝑥"

We need 𝑓(𝑥) and 𝑓′(𝑥) to proceed

Each next iteration is

𝑥()% = 𝑥(−
𝑓 𝑥(
𝑓 ' 𝑥(

27

27

Example: C++

double newton(void(*f)(double, double&, double&),double x, double eps,
int& flag)
{
 double fx, fpx, xc;
 int i, iter=1000;
 i = 0;
 do {
 i = i + 1;
 f(x,fx,fpx);
 xc = x - fx/fpx;
 x = xc;
 if(i >= iter) break;
 } while (fabs(fx) >= eps);
 flag = i;
 if (i == iter) flag = 0;
 return xc;
}

28

28

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6

Initial point is 1.0

iterations root

 4 0.73909

for bisectional method 22 iterations
for false position 8 iterations
Newton’s method 4 iterations

Newton's method has excellent local convergence properties.

However, its global convergence properties can be very poor, due to the
neglect of the higher-order terms in the Taylor series.

29

29

Newton’s method – possible problems

Very slow approach to the solution
when 𝑓′(𝑥) → 0 around the root

difficulty with local minima, sending
the next iteration value 𝑥()% far away

lack of convergence for asymmetric functions
𝑓(𝑎 + 𝑥) = −𝑓(𝑎 − 𝑥)

30

30

6

Comments to Newton’s method

Newton's method is an excellent method for polishing roots obtained by
other methods which yield results polluted by round-off errors

Newton's method has several disadvantages.

1. Some functions are difficult to differentiate analytically,
and some functions cannot be differentiated analytically at all.

2. If the derivative is small the next iteration may end up very far from
the root

Practical comment:
In any program we must check the size of the step for the next iteration. If
it is improbably large – then reject it (or switch to some other method)

31

31

3.2 Method of secants

The secant method is a variation of Newton's method when the
evaluation of derivatives is difficult.

The nonlinear function 𝑓(𝑥) is approximated locally by the linear function
𝑔(𝑥), which is the secant to 𝑓(𝑥), and the root of 𝑔(𝑥) is taken as an
improved approximation to the root of the nonlinear function 𝑓(𝑥).

32

32

3.2 Method of secants - algorithm

The derivative 𝑓′(𝑥) at point 𝑥(can be approximated as

𝑓 ' 𝑥(=
𝑓 𝑥(− 𝑓(𝑥(*%)

𝑥(− 𝑥(*%
From the Newton’s method

𝑥()% = 𝑥(−
𝑓 𝑥(
𝑓 ' 𝑥(

= 𝑥(−
𝑓(𝑥()(𝑥(− 𝑥(*%)
𝑓 𝑥(− 𝑓(𝑥(*%)

One has to select two initial points to start

Note that the method of secant = the False position method

The only difference is about selecting two points to start the method

33

33

Example: C++

double secant (double(*f)(double), double x1,
 double x2, double eps, int& flag)
{
 double x3;
 int i, iter=1000;
 flag = 1;
 i = 0;
 while (fabs(x2 - x1) >= eps)
 {
 i = i + 1;
 x3 = x2 - (f(x2)*(x2-x1))/(f(x2)-f(x1));
 x1 = x2;
 x2 = x3;
 if(i >= iter) break;
 }
 if (i == iter) flag = 0;
 return x3;
}

34

34

Example for y = x - cos(x) on [0.0,4.0] for eps = 1.0e-6

Initial point is 1.0

iterations root

 5 0.73909

for bisectional method 22 iterations
for false position 8 iterations
Newton’s method 4 iterations
the secant method 5 iterations

Which method is more efficient?

Jeeves showed that if the effort required to evaluate 𝑓(𝑥)’ is less than 43
percent of the effort required to evaluate 𝑓(𝑥), then Newton's method is
more efficient. Otherwise, the secant method is more efficient.

35

35

3.2 Muller’s and Brent’s methods

Muller's method is based on locally approximating the nonlinear function
𝑓(𝑥) by a quadratic function 𝑔(𝑥), and the root of the quadratic function
𝑔(𝑥) is taken as an improved approximation to the root of the nonlinear
function 𝑓(𝑥).

Three initial approximations 𝑥% , 𝑥! , and 𝑥# , (which are not required to
bracket the root), are required to start the algorithm.

The only difference between Muller's method and the secant method is
that 𝑔(𝑥) is a quadratic function in Muller's method and a linear function
in the secant method.

Brent’s Method is a hybrid method—it uses
parts of solving techniques from other methods.

Many numerical libraries, e.g. MatLab, implement
a version of Brent’s method.

36

36

7

Summary for the open domain methods

• All three methods converge rapidly in the vicinity of a root.

• When the derivative 𝑓′(𝑥) is difficult to determine or time consuming to
evaluate, the secant method is more efficient.

• In extremely sensitive problems, all three methods may misbehave
and require some bracketing technique.

• All three of the methods can find complex roots simply by using
complex arithmetic.

37

37

Complications

• there are no roots at all

• there is one root, but the function does not change the sign,
𝑓 𝑥 = 𝑥! − 2𝑥 + 1

• there are two or more roots on an interval [𝑎, 𝑏]

What will happen if we apply the bisectional method here?

How about Newton’s method? 38

38

Complications (cont.)

Many roots!

What root will you find with the bisectional method?

39

39

Multiple roots: “brute force” method

The brute force method is a good approach for dealing with multiple
roots.

You split the original interval [𝑎, 𝑏] into smaller intervals with some step ℎ
applying some of the methods for single roots to each subinterval.

Choosing a step size

• If the step size is too large, we may miss multiple zeros.

• Choosing too small steps may result in time consuming calculations.

• A graphical analysis of the equation may help
to decide for the most reasonable step for h.

• A good idea – evaluate roots for steps h and h/10
whether the number of roots stay the same.

40

40

Example 1:

𝑓 𝑥 = 𝑥 − cos 𝑥	

 Root(s) of f(x)
 Interval [-2.0, 2.0]
 Secant x0 = 1.0
 Tolerance = 1.00e-08
 root iterations f(root)
Bisectional 0.739085 29 -0.000000
False position 0.739085 11 -0.000000
Secant method 0.739085 6 0.000000
Matlab solution 0.739085 0.000000

 Brute force roots
 number root f(root)
 1 0.739085 0.000000

41

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f(x
)

41

Example 2:

𝑓 𝑥 = 𝑥# − 2𝑥! + 1.5𝑥 − 1/3

 Root(s) of f(x)
 Interval [-2.0, 2.0]
 Secant x0 = 1.0
 Tolerance = 1.00e-08
 root iterations f(root)
Bisectional 0.373462 29 -0.000000
False position 0.373462 347 0.000000
Secant method 0.373462 10 -0.000000
Matlab solution 0.373462 0.000000

 Brute force roots
 number root f(root)
 1 0.373462 0.000000

42

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-20

-15

-10

-5

0

5

f(x
)

42

8

Example 3:

𝑓 𝑥 = 4𝑥+ − 6𝑥! − 11/4

 Root(s) of f(x)
 Interval [-2.0, 2.0]
 Secant x0 = 0.5
 Tolerance = 1.00e-08
 root iterations f(root)
Bisectional: No root found
False position: No root found
Secant method 0.500012 18 -4.000046
Matlab solution 1.366760 0.000000

 Brute force roots
 number root f(root)
 1 -1.366760 0.000000
 2 1.366760 0.000000
but for x0=1.0 Secant method gives 1.366760 after 11 iterations

43

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-5

0

5

10

15

20

25

30

35

40

f(x
)

43

Example 4:

𝑓 𝑥 = exp 𝑥 − 2 sin(𝑥) − 2

 Root(s) of f(x)
 Interval [-2.0, 2.0]
 Secant x0 = 1.0
 Tolerance = 1.00e-08
 root iterations f(root)
Bisectional 1.376879 29 -0.000000
False position -1.950219 5 0.000000
Secant method 1.376879 8 -0.000000
Matlab solution 1.376879 0.000000

 Brute force roots
 number root f(root)
 1 -1.950219 -0.000000
 2 -0.932760 0.000000
 3 1.376879 0.000000

44

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-2

-1

0

1

2

3

4

f(x
)

44

Example 5:

𝑓 𝑥 = exp 𝑥 ln(𝑥!) − 𝑥 cos 𝑥

 Root(s) of f(x)
 Interval [-2.0, 2.0]
 Secant x0 = 1.0
 Tolerance = 1.00e-08
 root iterations f(root)
Bisectional 1.088682 29 -0.000000
False position -1.685852 20 -0.000000
Secant method 1.088682 7 -0.000000
Matlab solution 1.088682 -0.000000

 Brute force roots
 number root f(root)
 1 -1.685852 0.000000
 2 -0.623612 0.000000
 3 1.088682 0.000000

45

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-10

-5

0

5

10

15

f(x
)

45

Example 5: change x0

𝑓 𝑥 = exp 𝑥 ln(𝑥!) − 𝑥 cos 𝑥

 Root(s) of f(x)
 Interval [-2.0, 2.0]
 Secant x0 =-1.0
 Tolerance = 1.00e-08
 root iterations f(root)
Bisectional 1.088682 29 -0.000000
False position -1.685852 20 -0.000000
Secant method -1.685852 13 0.000000
Matlab solution -0.623612 0.000000

 Brute force roots
 number root f(root)
 1 -1.685852 0.000000
 2 -0.623612 0.000000
 3 1.088682 0.000000

46

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-10

-5

0

5

10

15

f(x
)

46

Part 4:

Roots of polynomials

𝑎^𝑥^+𝑎^_`𝑥^_`+⋯+𝑎`𝑥 +𝑎a = 0

47

Ideas

The fundamental theorem of algebra states that a nth-degree polynomial
has exactly n zeros, or roots.

The roots may be real or complex. If the coefficients are all real, complex
roots always occur in conjugate pairs. The roots may be single (i.e.,
simple) or repeated (i.e., multiple).

Descartes' rule of signs, which applies to polynomials having real
coefficients, states that the number of positive roots of 𝑃𝑛(𝑥) is equal to
the number of sign changes in the nonzero coefficients of 𝑃𝑛(𝑥) or is
smaller by an even integer.

The number of negative roots is found in a similar manner by considering
𝑃𝑛(−𝑥).

48

48

9

The bracketing methods for Pn(x)

The bracketing methods (bisection and false position), cannot be used to
find repeated roots with an even multiplicity, since the nonlinear function
𝑓(𝑥)	does not change sign at such roots.

Repeated roots with an odd multiplicity can be bracketed by monitoring
the sign of 𝑓(𝑥),	but even in this case the open methods are more
efficient.

49

49

The open methods for Pn(x)

The open can be used to find the roots of polynomials: Newton's method,
the secant method, and Muller's method.

These three methods also can be used for finding the complex roots of
polynomials, provided that complex arithmetic is used, and reasonably
good complex initial approximations are specified.

There are various modifications of Newton’s method for polynomials

Other methods for polynomials: Bairstow's method, Laguerre’s method,
Eigenvalue method.

Matlab has a function roots to return roots of polynomials.

50

50

Part 5:

Nonlinear systems of equations

51

Systems of non-linear equations

c
𝑓 𝑥, 𝑦 = 0
𝑔 𝑥, 𝑦 = 0

“There are no good, general methods for solving systems of more than
one nonlinear equation”
Numerical recipes in C by W. H Press et al.

• Bracketing methods are not readily extendable to systems of
nonlinear equations.

• Newton's method, however, can be extended to solve systems of
nonlinear equations. Quite often you need a good initial guess.

52

52

Newton’s method

Find 𝑥∗ and 𝑦∗ such that 𝑓 𝑥∗ , 𝑦∗ ≈ 0, 𝑔 𝑥∗ , 𝑦∗ ≈ 0

Using Taylor series about (𝑥, 𝑦)

𝑓 𝑥∗ , 𝑦∗ = 𝑓 𝑥, 𝑦 + 𝑓.' 𝑥, 𝑦 𝑥∗ − 𝑥 + 𝑓/' 𝑥, 𝑦 𝑦∗ − 𝑦 + ⋯

𝑔 𝑥∗ , 𝑦∗ = 𝑔 𝑥, 𝑦 + 𝑔.' 𝑥, 𝑦 𝑥∗ − 𝑥 + 𝑔/' 𝑥, 𝑦 𝑦∗ − 𝑦 + ⋯

keeping only first-order terms and setting 𝑓 𝑥∗ , 𝑦∗ ≈ 0, 𝑔 𝑥∗ , 𝑦∗ ≈ 0

one has a system of linear equations for 𝑥∗ and 𝑦∗ . Solving it gives

𝑥∗ = 𝑥 +
𝑓/'(𝑥, 𝑦)𝑔 𝑥, 𝑦 − 𝑓 𝑥, 𝑦 𝑔/' (𝑥, 𝑦)
𝑓.' 𝑥, 𝑦 𝑔/' 𝑥, 𝑦 − 𝑓/' 𝑥, 𝑦 𝑔.' (𝑥, 𝑦)

𝑦∗ = 𝑦 +
𝑓 𝑥, 𝑦 𝑔.' 𝑥, 𝑦 − 𝑓.' 𝑥, 𝑦 𝑔	(𝑥, 𝑦)
𝑓.' 𝑥, 𝑦 𝑔/' 𝑥, 𝑦 − 𝑓/' 𝑥, 𝑦 𝑔.' (𝑥, 𝑦)

53

c𝑓 𝑥, 𝑦 = 0
𝑔 𝑥, 𝑦 = 0

53

Example: C++

void newton2(double& x1, double& y1, double eps, int& i)
{
 double f1, g1, fx, fy, gx, gy;
 double del, x2, y2, dx, dy;
 int iter = 99;
 i = 0;
 do {
 i = i + 1;
 fg(x1, y1, f1, g1, fx, fy, gx, gy);
 del = fx*gy - fy*gx;
 dx=(fy*g1-f1*gy)/del;
 dy=(f1*gx-fx*g1)/del;
 x2=x1+dx;
 y2=y1+dy;
 x1=x2;
 y1=y2;
 if(i >= iter) break;
 } while (fabs(dx) >= eps && fabs(dy) >=eps);
 i = i+1;
}

54

54

10

Example

𝑓 𝑥, 𝑦 = 𝑦! 1 − 𝑥 − 𝑥# 	 𝑔 𝑥, 𝑦 = 𝑥! + 𝑦! − 1	 𝑓 𝑥, 𝑦 = 𝑦! 1 − 𝑥 − 𝑥#

ℎ 𝑥, 𝑦 = 0	 ℎ 𝑥, 𝑦 = 0	 𝑔 𝑥, 𝑦 = 𝑥! + 𝑦! − 1

55

e𝑦
!(1−𝑥) = 𝑥#
𝑥! +𝑦! = 1

55

Example

plots

𝑓 𝑥, 𝑦 = 𝑦! 1 − 𝑥 − 𝑥# 	

𝑔 𝑥, 𝑦 = 𝑥! + 𝑦! − 1

ℎ 𝑥, 𝑦 = 0

solutions

56

e𝑦
!(1−𝑥) = 𝑥#
𝑥! +𝑦! = 1

56

Example with various initial points

Newtons method for two coupled nonlinear equations
 i x y f g dx dy
 1 1.00000 1.00000 -1.00000 1.00000 -0.25000 -0.25000

 2 0.75000 0.75000 -0.28125 0.12500 -0.11905 0.03571
 3 0.63095 0.78571 -0.02335 0.01545 -0.01276 0.00041
 4 0.61819 0.78613 -0.00030 0.00016 -0.00016 0.00002

 5 0.61803 0.78615 -0.00000 0.00000 -0.00000 0.00000
 6 0.61803 0.78615 -0.00000 0.00000

Newtons method for two coupled nonlinear equations

 i x y f g dx dy
 1 1.00000 -1.00000 -1.00000 1.00000 -0.25000 0.25000

 2 0.75000 -0.75000 -0.28125 0.12500 -0.11905 -0.03571
 3 0.63095 -0.78571 -0.02335 0.01545 -0.01276 -0.00041
 4 0.61819 -0.78613 -0.00030 0.00016 -0.00016 -0.00002

 5 0.61803 -0.78615 -0.00000 0.00000 -0.00000 -0.00000
 6 0.61803 -0.78615 -0.00000 0.00000

57

57

Part 6:

Summary

58

Root-finding algorithms should contain:

1. An upper limit on the number of iterations.

2. If the method uses the derivative 𝑓′(𝑥), it should be monitored to
ensure that it does not approach zero.

3. A convergence test for the magnitude of the solution, 𝑥$)% − 𝑥$ ≤ 𝜀,
or/and the magnitude of the nonlinear function, 𝑓 𝑥$)% ≤ 𝜀,
must be included.

4. When convergence is indicated, the final root estimate should be
inserted into the nonlinear function 𝑓(𝑥) to guarantee that 𝑓(𝑥) 	= 	0
within the desired tolerance.

59

59

Summary 1:

1. Bisection and false position methods converge very slowly but are
certain to converge because the root lies in a closed domain.

2. Newton's method and the secant method are both effective methods
for solving nonlinear equations. Both methods generally require
reasonable initial approximations.

3. Polynomials can be solved by any of the methods for solving
nonlinear equations.
However, the special features of polynomials should be taken into
account.

60

60

11

Summary 2:

3. Multiple roots can be evaluated using Newton's basic method or its
variations, or brute force method

4. Complex roots can be evaluated by Newton's method or the secant
method by using complex arithmetic.

5. Solving systems of nonlinear equations is a difficult task.
For systems of nonlinear equations which have analytical partial
derivatives, Newton's method can be used.
Otherwise, multidimensional minimization techniques may be
preferred.
No single approach has proven to be the most effective.
Solving systems of nonlinear equations remains a difficult problem.

61

61

Summary 3:

6. Good initial approximations are extremely important.

7. For smoothly varying functions, most algorithms will always converge
if the initial approximation is close enough.

8. Many, if not most, problems in engineering and science are well
behaved and straightforward.

9. When a problem is to be solved only once or a few times, the
efficiency of the method is not of major concern. However, when a
problem is to be solved many times, efficiency of the method is of
major concern.

10. If a nonlinear equation has complex roots, that must be anticipated
when choosing a method.

11. Analyst's time versus computer time must be considered when
selecting a method.

62

62

Pitfalls of Root Finding Methods

1. Lack of a good initial approximation

2. Convergence to the wrong root

3. Closely spaced roots

4. Multiple roots

5. Inflection points

6. Complex roots

7. Ill-conditioning of the nonlinear equation

8. Slow convergence

63

63

Other Methods of Root Finding

Brent's method uses a superlinear method (i.e., inverse quadratic
interpolation) and monitors its behavior to ensure that it is behaving
properly.

For finding the roots of polynomials: Graeff's root squaring method, the
Lehmer-Schur method, and the QD (quotient-difference) method. Two of
the more important additional methods for polynomials are Laguerre's
method and the Jenkins-Traub method

64

64

Packages for non-linear equations

Numerous libraries and software packages are available for solving
nonlinear equations. Many workstations and mainframe computers have
such libraries attached to their operating systems

Many commercial software packages contain nonlinear equation solvers
(e.g. Matlab, Mathematica, Maple, Mathcad).

More sophisticated packages can be found in IMSL, NAG.

The book Numerical Recipes (Press et al., many editions) contains
numerous subroutines for solving nonlinear equations.

65

65

Final thoughts

1. Choosing right computational method for finding roots is a difficult
skill for beginners.

2. A method that was efficient for one equation may fail miserably for
another

3. Any method should be used intelligently!

66

66

