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Part 1: 

Gaussian quadrature
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Key idea

The idea behind Gaussian quadrature is to approximate the integral of 
the desired function, 𝑓(𝑥), in terms of the weighted sum of the function 
evaluated at some systematically chosen points.
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Although this looks almost exactly the same as the previously 
considered techniques, the key difference is how we obtained the 
values of  𝑥#   and 𝐶# .

When the locations 𝑥#  are prespecified, this approach yields the best 
possible result.

Attention: the function should be a known function, such that we can 
evaluate 𝑓(𝑥#) at any given point. 
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Additional degree of freedom
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If 𝑛 points are used, 2𝑛 parameters are available: 𝑥# 	(𝑖 = 1, 2, … , 𝑛)	and 
𝐶#(𝑖 = 1, 2, … , 𝑛). 

With 2𝑛 parameters it is possible to fit a polynomial of degree 2𝑛 − 1.

Gaussian integration (or Gaussian quadrature) produces higher 
accuracy than the Newton-Cotes formulas with the same number of 
function evaluations.

If the function to integrate is not smooth, then Gaussian quadrature may 
give lower accuracy
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Procedure

1. Gaussian quadrature formulas are obtained by choosing the 𝑛 
values of 𝑥#  and 𝐶#  so that the integral of a polynomial of degree 
2𝑛 − 1 is exact, i.e. if 𝑓(𝑥) ≈ 𝑃'&(%(𝑥) then

%
!

"

𝑃'&(%(𝑥)𝑑𝑥 = (
#$%

&

𝐶#𝑃'&(%(𝑥#)

2. Use these same values of {𝑥# , 𝐶#} for any other smooth function.
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Gaussian quadrature for n=2 (2n-1=3)

𝑃)(𝑥) = 𝑎* + 𝑎%𝑥 + 𝑎'𝑥' + 𝑎)𝑥)

Left-hand side
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Right-hand side

𝐶%𝑃) 𝑥% +𝐶'𝑃) 𝑥' = 𝐶% 𝑎* +𝑎%𝑥% +𝑎'𝑥%' +𝑎)𝑥%) +𝐶' 𝑎* +𝑎%𝑥' +𝑎'𝑥'' +𝑎)𝑥')

= 𝑎* 𝐶% +𝐶' +𝑎% 𝐶%𝑥% +𝐶'𝑥' +𝑎' 𝐶%𝑥%' +𝐶'𝑥'' +𝑎)(𝐶%𝑥%) +𝐶'𝑥'))

Next, we want to match the left-hand side (LHS) and the right-hand side (RHS)
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Gaussian quadrature for n=2 (cont.)
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Four unknowns and four equations             and the solutions
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Parameterization

Gaussian quadrature is typically written in terms of a parameter  𝑡, 
defined via

𝑥 =
𝑏 − 𝑎
2

𝑡 +
𝑏 + 𝑎
2

.

This replaces the integration range from 𝑥 ∈ [𝑎, 𝑏] to 𝑡 ∈ [−1, +1]. 

If we define 𝐹 𝑡 ≡ 𝑓[𝑥 𝑡 ] and redefine 𝐶#  as ⁄𝐶# ⇒ 𝐶#(𝑏 − 𝑎) 2 then the 
Gaussian quadrature can be written as
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There is no inherent advantage of this form, since they are 
mathematically identical, but it is common in the literature.
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Re-deriving the previous result

With this, we can re-derive the values of {𝑡% , 𝑡' , 𝐶%𝐶'} by asserting that 
the integrals are exact for 𝐹 𝑡 = 1 + 	𝑡 + 𝑡' + 𝑡)  . This gives four 
different constraints,
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𝑡𝑑𝑡 = 0 = 𝐶%𝑡% + 𝐶'𝑡'
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𝑡)𝑑𝑡 = 0 = 𝐶%𝑡%) + 𝐶'𝑡')

Solving the system … 𝐶% = 1, 𝐶' = 1, 𝑡% = −𝑡' = ⁄1 3
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Gaussian quadrature parameters

We can summarize the values for {𝑡# , 𝐶#}  polynomials of second, third 
and fourth order.

10

10

Example: 4-point Gaussian quadrature C++
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/*  Numerical integration of f(x) on [a,b]
 method: Gauss (4 points)

input:
 f  - a single argument real function
 a,b - the two end-points (interval of integration)

output:  r - result of integration
*/
 double gauss4(double(*f)(double), double a, double b)

{
 const int n = 4;
 double ti[n] = {-0.8611363116, -0.3399810436,

 0.3399810436,  0.8611363116};
 double ci[n] = { 0.3478548451,  0.6521451549,

 0.6521451549,  0.3478548451};
 double r, m, c;
 r = 0.0;
 m = (b-a)/2.0;
 c = (b+a)/2.0;
 for (int i = 1; i <= n; i=i+1)
 {r = r + ci[i-1]*f(m*ti[i-1] + c); }
 r = r*m;
 return r;

} 
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Example: 8-point Gaussian quadrature C++
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/*  Numerical integration of f(x) on [a,b]
 method: Gauss (8 points using symmetry)

input:
 f  - a single argument real function
 a,b - the two end-points (interval of integration)

output:  r - result of integration */
 double gauss8(double(*f)(double), double a, double b)

{
 const int n = 4;
 double ti[n] = {0.1834346424, 0.5255324099,

 0.7966664774, 0.9602898564};
 double ci[n] = {0.3626837833, 0.3137066458,

 0.2223810344, 0.1012285362};
 double r, m, c;
 r = 0.0;
 m = (b-a)/2.0;
 c = (b+a)/2.0;
 for (int i = 1; i <= n; i=i+1)
 {r=r+ci[i-1]*(f(m*(-1.0)*ti[i-1]+c)+f(m*ti[i-1]+c));
 }
 r = r*m;
 return r;

}
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Example: Python (both 4- and 8-points)

13

Same thing except both cases built into one and slightly 
different syntax
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Example

Now let’s evaluate the integral considered before sing Trapezoid, 
Simpson and Gaussian quad. with 4 and 8 points…
Intervals  Trapez.  Simpson

 2  1.570796  2.094395            Gauss4 = 1.999984
 4  1.896119  2.004560            Gauss8 = 2.000000
 8  1.974232  2.000269
 16  1.993570  2.000017
 32  1.998393  2.000001
 64  1.999598  2.000000
 128  1.999900  2.000000
 256  1.999975  2.000000
 512  1.999994  2.000000
 1024  1.999998  2.000000
 2048  2.000000  2.000000
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%
*

,
sin𝑥𝑑𝑥 = 2.0
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Generalized Gaussian quadratures

Gaussian method can be generalized to a wider class of integrals

%
!

"

𝑔 𝑥 𝑓 𝑥 𝑑𝑥

Tables with coefficients can be found in “Handbook of Mathematical Functions, 
With Formulas, Graphs, and Mathematical Tables” by Abramowitz and Stegun.
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Part 2: 

Automatic and adaptive integration
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Automatic integration

“The aim of an automatic integration scheme is to relieve the person who 
has to compute an integral of any need to think.”

Davis P. J., and P. Rabinowitz, Methods of Numerical Integration (Dover, 
2nd edition) (2007)

• While any desired accuracy (within round-off limits) can be obtained 
by taking smaller and smaller increments, this approach is generally 
undesirable, since evaluation of the integrand function 𝑓(𝑥) is the 
most time-consuming portion of the calculation. 

• Imagine that you do not know how many intervals are needed to 
achieve convergence.
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Automatic integration from user perspective

User-friendly routines where the user enters 

1. the limits of integration

2. the routine for computation of 𝑓(𝑥), 

3. the tolerance 𝜀, 

4. the upper bound 𝑁 for the number of functional computations. 

Then the program exits either 

a) with the computed value which is correct within the 𝜀

b) or with a statement that the upper bound 𝑁 was attained but the 
tolerance was not achieved, and the computed result may be the 
"best“ value of the integral determined by the program. 

18

18



4

Objectives of automatic integration

Get a value 𝐼 of the integral, which is allegedly correct to within the 
tolerance, that is,

𝐼 − %
!

"

𝑓(𝑥) 𝑑𝑥 ≤ 𝜀

or

𝐼 − ∫!
" 𝑓 𝑥 𝑑𝑥

∫!
" 𝑓(𝑥) 𝑑𝑥

≤ 𝜀

or both

𝐼 − %
!

"

𝑓(𝑥) 𝑑𝑥 ≤ max 𝜀!"- , 𝜀./0 %
!

"

𝑓(𝑥) 𝑑𝑥

where 𝜀!"-  and 𝜀./0  are absolute and relative tolerances, respectively. 19
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General exit criterion for automatic integration

Assume 𝐼%(𝑓), 𝐼'(𝑓), … 𝐼&(𝑓), 𝐼&1%(𝑓) are iterative refinements of the 
integral, then the program exits and prints out the value 𝐼 &1% 𝑓 .

If the upper bound 𝑁 is achieved without a "yes" to the criterion, the 
program selects the value of 𝑛 for which

𝐼&1% 𝑓 − 𝐼&(𝑓) = 𝑐&

is minimum, and prints out both 𝐼&(𝑓) and the difference 𝑐& .
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Efficiency 

One of goals of automatic integration is to achieve the desired accuracy 
with the minimum number of integrand function evaluations

Therefore it is wise to choose rules of integration in such a way that all or 
almost all the information gathered at the nth stage is not discarded but is 
used in forming the (n + 1)th stage. 

Examples of this are the trapezoidal rules using 22 + 1 points, the 
Gauss-Kronrod sequence, the generalized composite Newton-Cotes 
rules, i.e., rules in which a particular Newton-Cotes integration rule 
(usually closed and containing an odd number of points) is used in each 
subinterval of a general partition of the interval of integration.

21

21

Required qualities of automatic integration 

The qualities required of an automatic integrator are efficiency, reliability, 
and robustness.

Efficiency is usually measured by either the amount of computer time or 
the number of integrand evaluations required to calculate a set of 
integrals.

A reliable program is one that if it exits successfully, then we are 
reasonably certain that the magnitude of the actual error does not 
exceed the requested tolerance. 

Robustness which means that the program will integrate correctly a 
broad range of integrals with an occasional failure.

It is virtually impossible to satisfy to highest degree all three qualities in 
one program. 
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Two possibilities for automatic integration

1. The non-adaptive schemes: the integration points are chosen in a 
fixed manner which is independent of the nature of the integrand, 
although the number of these  points depends on the integrand - 
continue to subdivide all subintervals, say by half, until overall error 
estimate falls below desired tolerance 
Not an inefficient way, but easy to implement.

2. The adaptive schemes: the points at which the integration is carried 
out are chosen in a manner that is dependent on the nature of the 
integrand – the domain of integration is selectively refined to reflect 
behavior of particular integrand function on a specific subinterval.
Generally very efficient, but implementation can be challenging
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The non-adaptive schemes

Generally increasing number of interval and compare results, for 
example for 𝐼 ℎ , 𝐼 ⁄ℎ 2 , 𝐼 ⁄ℎ 4 …	till the tolerance is achieved as 
𝐼 ⁄ℎ 𝑛 − 𝐼( ⁄ℎ 2𝑛) ≤ 𝜀, where ℎ the initial size of the intervals, 

and 𝑛 = 1,2 … 

24
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Example: Non-adaptive Simpson rule

25

Subroutine simpson2(f,a,b,eps,integral,nint)
!==========================================================
! Integration of f(x) on [a,b]
! Method: Simpson rule with doubling number of intervals  
!         till  error = coeff*|I_n - I_2n| < eps
… here we declare data types
nmax=16384 
coeff = 1.0/15.0
h = (b-a)/2.0
sn = (1.0/3.0)*h*(f(a)+4.0*f(a+h)+f(b))
! loop over number of intervals (starting from 4 intervals)
n=4
do while (n <= nmax)
   s2n = 0.0   
   h = (b-a)/dfloat(n)
   do i=2, n-2, 2
      x   = a+dfloat(i)*h
      s2n = s2n + 2.0*f(x) + 4.0*f(x+h)
   end do
   s2n = (s2n + f(a) + f(b) + 4.0*f(a+h))*h/3.0
   if(coeff*abs(s2n-sn) <= eps) then
      integral = s2n + coeff*(s2n-sn)
      nint = n
      exit
   end if
   sn = s2n
   n = n*2
end do
return
end subroutine simpson2
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The adaptive schemes

Adaptive integration is a generic name denoting a strategy to achieve 
the desired accuracy with the minimum number of integrand function 
evaluations. 

The overall range of integration is broken into several subranges, and 
each subrange is evaluated to the desired accuracy by subdividing each 
individual subrange as required until the desired accuracy is obtained. 
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Strategies for adaptive algorithms

There are very many approaches to adaptive integration. Here is an 
example using doubling of subintervals
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Example: Simpson adaptive integration (Fortran)

28

Subroutine simpson1(f,a,b,eps,sum,nfun)
!==========================================================
! Integration of f(x) on [a,b]
! Method: adaptive non-recursive Simpson rule  
! written by: Alex Godunov 
!----------------------------------------------------------
… data types here (not typed to save space)
integer, parameter :: im=64, nmax=5000
! *** stage 1 ***
! initialization for level 1 (top level)
sum = 0
i = 1
imax = im
x(1)   = a
h(1)   = (b-a)/2.0
fa(1)  = f(a)
fm(1)  = f(a+h(1))
fb(1)  = f(b)
tol(1) = 15.0*eps    
il(1)  = 1
! Simpson's method for [a,b]
s(1) = h(1)*(fa(1)+4*fm(1)+fb(1))/3.0
nfun = 3
! *** stage 2 ***
! main part: adaptive integration
do while (i > 0)
! *** stage 2a ***
! calculate function values at h/2 and 3h/2
  f1 = f(x(i) +     h(i)/2.0)
  f3 = f(x(i) + 3.0*h(i)/2.0)
  nfun = nfun + 2

28

cont.

29

! Simpson's integrals for the left and right intervals
  s1 = h(i)*(fa(i)+4.0*f1+fm(i))/6.0
  s2 = h(i)*(fm(i)+4.0*f3+fb(i))/6.0
! *** stage 2b ***
! save data at this level
  x0 = x(i)
  f0 = fa(i)
  f2 = fm(i)
  f4 = fb(i)
  step = h(i)
  err  = tol(i)
  s0   = s(i)
  deep = il(i)
! *** stage 2c ***
! the current level has been computed 
  i=i-1
! *** stage 2d ***
! local condition for convergence
  if(abs(s1+s2-s0) <= err ) then
    sum = sum + (s1+s2)
    else
! *** stage 2e *** 
!   check if the code can continue to subdivide intervals
      if( deep >= imax ) then   ! stop integration
      write (6,200)
   write (6,201) deep
      exit
      else

29

cont.

30

! *** stage 2f ***
!   make smaller intervals (i.e. h=h/2)
!     data for the right subinterval
        i = i+1
        x(i)  = x0 + step
        fa(i) = f2
        fm(i) = f3
        fb(i) = f4
        h(i)  = step/2.0
        tol(i)= err/2.0
        s(i)  = s2
        il(i) = deep + 1
!     data for the left subinterval
        i = i+1
        x(i)  = x0
        fa(i) = f0
        fm(i) = f1
        fb(i) = f2
        h(i)  = h(i-1)
        tol(i)= tol(i-1)
        s(i)  = s1
        il(i) = il(i-1)
 end if
  end if
end do
200 format(/,6x,'Required accuracy can not be achieved')
201 format(  6x,'The level h/2 for subintervals is  = ',i8)
return
end subroutine simpson1
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Example: with recursive function

31

recursive function gauss_a(f,a,b,eps)
!==========================================================
! Integration of f(x) on [a,b]
! Method: Gauss quadratures with adaptive integration  
! for left/right intervals till  error = |I_16 - I_8| < eps
!----------------------------------------------------------
! f   - Function to integrate (supplied by a user)
! a   - Lower limit of integration
! b   - Upper limit of integration
! eps - tolerance (should not be less than 1.0e-8)
! OUT:
! gauss_a - Result of integration
!==========================================================
implicit none
double precision gauss_a, f, a, b, eps, gauss8, gauss16
double precision s1, s2, h, ax, bx, sum
integer i
external f
if(eps <= 1.0e-8) eps = 1.0e-8
h = (b-a)/2.0
sum = 0.0
do i=1,2
   ax = a + h*dfloat(i-1)
   bx = ax + h
   s1 =  gauss8(f,ax,bx)
   s2 = gauss16(f,ax,bx)
   if(abs(s2-s1)<= eps .and. abs(s2-s1)/abs(s2+s1)<= eps) then
      sum = sum + s2
   else
      sum = sum + gauss_a(f,ax,bx,eps)
   end if
end do
gauss_a = sum
return
end function gauss_a

31

Example: Quanc8 - efficient, reliable and robust (C++)

32

void quanc8(double(*fun)(double), double a, double b,
            double abserr, double relerr,
            double& result, double& errest, int& nofun,double& flag)
/*
   estimate the integral of fun(x) from a to b to a user provided tolerance.
   an automatic adaptive routine based on the 8-panel newton-cotes rule.
input:
   fun     the name of the integrand function subprogram fun(x).
   a       the lower limit of integration.
   b       the upper limit of integration.(b may be less than a.)
   relerr  a relative error tolerance. (should be non-negative)
   abserr  an absolute error tolerance. (should be non-negative)
output:
   result  an approximation to the integral hopefully satisfying the
           least stringent of the two error tolerances.
   errest  an estimate of the magnitude of the actual error.
   nofun   the number of function values used in calculation of result.
   flag    a reliability indicator.  if flag is zero, then result
           probably satisfies the error tolerance.  if flag is
           xxx.yyy , then  xxx = the number of intervals which have
           not converged and  0.yyy = the fraction of the interval
           left to do when the limit on  nofun  was approached.
comments:
   written by Alex Godunov
   the program is based on a fortran version of program quanc8.f
*/
{
    double w0,w1,w2,w3,w4,area,x0,f0,stone,step,cor11,temp;
    double qprev,qnow,qdiff,qleft,esterr,tolerr;
    double qright[32], f[17], x[17], fsave[9][31], xsave[9][31];
    double dabs,dmax1;
    int    levmin,levmax,levout,nomax,nofin,lev,nim,i,j;
    int    key;

32

cont.

33

//  ***   stage 1 ***   general initialization
    levmin = 1;
    levmax = 30;
    levout = 6;
    nomax = 5000;
    nofin = nomax - 8*(levmax - levout + 128);
//  trouble when nofun reaches nofin
    w0 =   3956.0 / 14175.0;
    w1 =  23552.0 / 14175.0;
    w2 =  -3712.0 / 14175.0;
    w3 =  41984.0 / 14175.0;
    w4 = -18160.0 / 14175.0;
//  initialize running sums to zero.
    flag   = 0.0;
    result = 0.0;
    cor11  = 0.0;
    errest = 0.0;
    area   = 0.0;
    nofun  = 0;
    if (a == b) return;
//  ***   stage 2 ***   initialization for first interval
    lev = 0;
    nim = 1;
    x0 = a;
    x[16] = b;
    qprev  = 0.0;
    f0 = fun(x0);
    stone = (b - a) / 16.0;
    x[8]  =  (x0    + x[16])   / 2.0;
    x[4]  =  (x0    + x[8])    / 2.0;
    x[12] =  (x[8]  + x[16])   / 2.0;
    x[2]  =  (x0    + x[4])    / 2.0;
    x[6]  =  (x[4]  + x[8])    / 2.0;
    x[10] =  (x[8]  + x[12])   / 2.0;
    x[14] =  (x[12] + x[16])   / 2.0;
    

33

cont.

34

for (j=2; j<=16; j = j+2)
    {
      f[j] = fun(x[j]);
    }
    nofun = 9;
//  ***   stage 3 ***   central calculation
    while(nofun <= nomax)
    {
      x[1] = (x0 + x[2]) / 2.0;
      f[1] = fun(x[1]);
      for(j = 3; j<=15; j = j+2)
        {
          x[j] = (x[j-1] + x[j+1]) / 2.0;
          f[j] = fun(x[j]);
        }
      nofun = nofun + 8;
      step  = (x[16] - x0) / 16.0;
      qleft  = (w0*(f0 + f[8])  + w1*(f[1]+f[7])  + w2*(f[2]+f[6])
             + w3*(f[3]+f[5])  +  w4*f[4]) * step;
      qright[lev+1] = (w0*(f[8]+f[16])+w1*(f[9]+f[15])+w2*(f[10]+f[14])
                    + w3*(f[11]+f[13]) + w4*f[12]) * step;
      qnow  = qleft + qright[lev+1];
      qdiff = qnow  - qprev;
      area  = area  + qdiff;
//  ***   stage 4 *** interval convergence test
      esterr = fabs(qdiff) / 1023.0;
      if(abserr >= relerr*fabs(area))
        tolerr = abserr;
        else
        tolerr = relerr*fabs(area);
      tolerr = tolerr*(step/stone);

34

cont.

35

// multiple logic conditions for the convergence test
      key = 1;
      if (lev < levmin) key = 1;
        else if (lev >= levmax)
        key = 2;
        else if (nofun > nofin)
        key = 3;
        else if (esterr <= tolerr)
        key = 4;
        else
        key = 1;
      switch (key) {
// case 1 ********************************* (mark 50)
      case 1:
//      ***   stage 5   ***   no convergence
//      locate next interval.
        nim = 2*nim;
        lev = lev+1;
//      store right hand elements for future use.
        for(i=1; i<=8; i=i+1)
        {
          fsave[i][lev] = f[i+8];
          xsave[i][lev] = x[i+8];
        }
//      assemble left hand elements for immediate use.
        qprev = qleft;
        for(i=1; i<=8; i=i+1)
        {
          j = -i;
          f[2*j+18] = f[j+9];
          x[2*j+18] = x[j+9];
        }
        continue;  // go to start of stage 3 "central calculation"
      break;

35

cont.

36

// case 2 ********************************* (mark 62)
      case 2:
        flag = flag + 1.0;
      break;
// case 3 ********************************* (mark 60)
      case 3:
//    ***   stage 6   ***   trouble section
//    number of function values is about to exceed limit.
        nofin = 2*nofin;
        levmax = levout;
        flag = flag + (b - x0) / (b - a);
      break;
// case 4 ********************************* (continue mark 70)
      case 4:
      break;
// default ******************************** (continue mark 70)
      default:
      break;
// end case section ***********************
}
//   ***   stage 7   ***   interval converged
//   add contributions into running sums.
    result = result + qnow;
    errest = errest + esterr;
    cor11  = cor11  + qdiff / 1023.0;
//  locate next interval
    while (nim != 2*(nim/2))
    {
      nim = nim/2;
      lev = lev-1;
    }
    nim = nim + 1;
    if (lev <= 0) break;  // may exit futher calculation

36
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cont.

37

//  assemble elements required for the next interval.
    qprev = qright[lev];
    x0 = x[16];
    f0 = f[16];
    for (i =1; i<=8; i=i+1)
    {
      f[2*i] = fsave[i][lev];
      x[2*i] = xsave[i][lev];
    }
}
//  *** end stage 3 ***   central calculation
//  ***   stage 8   ***   finalize and return
    result = result + cor11;
//  make sure errest not less than roundoff level.
    if (errest == 0.0) return;
    do
    {
     temp = fabs(result) + errest;
     errest = 2.0*errest;
    }
    while (temp == fabs(result));
    return;
}

37

Example: eps=10-8

%
*

,

sin 𝑥 𝑑𝑥

 Adaptive Simpson =   2.00000001
 Tol. estimated   =   0.00000001
 Function calls   =          121

 Integral Quanc8  =   2.00000000
 Tol. estimated   =   0.00000000
 Function calls   =           33

 Adaptive G7K15   =   2.00000000
 Tol. estimated   =   0.00000000
 Function calls   =           15

 Adaptive G10K21  =   2.00000000
 Tol. estimated   =   0.00000000
 Function calls   =           21

38

38

Example: eps=10-8 

%
*

, 𝑥 cos(10𝑥')
𝑥' + 1

𝑑𝑥

 Adaptive Simpson =   0.00031559
 Tol. estimated   =   0.00000000
 Function calls   =         3605

 Integral Quanc8  =   0.00031559
 Tol. estimated   =   0.00000000
 Function calls   =          705

 Adaptive G7K15   =   0.00031559
 Tol. estimated   =   0.00000000
 Function calls   =          615

 Adaptive G10K21  =   0.00031559
 Tol. estimated   =   0.00000001
 Function calls   =          399

39
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0.4
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39

What to do if …?

Suppose that an automatic integration scheme is applied to a function 
𝑓(𝑥) over an interval [𝑎, 𝑏] with a given error tolerance 𝜀 and exits with 
an indication of failure. What is one to do next? 

1. Increase, if possible, the number of functional evaluations allowed.

2. Raise the error tolerance 𝜀.

3. Subdivide the interval [𝑎, 𝑏] into two or more subintervals, preferably 
in a random manner, and apply the integration scheme separately 
on each subinterval.

4. Try a different automatic integration scheme, perhaps one with 
special features suitable for the integrand in question.

5. Try to locate the interior singularities of the integrand and integrate 
between them, thus converting interior singularities to endpoint 
singularities which are much more tractable. 40

40

Attention

Adaptive programs tend to be effective in practice …
but it can be fooled. 
Interval of integration may be very wide but 
“interesting" behavior of integrand is confined to 
narrow range

Sampling by automatic routine may miss interesting 
part of integrand behavior, and resulting value for 
integral may be completely wrong.

Such examples can be found in the excellent book 
by Davis and Rabinowitz, chapter 6.

41

41

Libraries

All respected numerical libraries have routines for adaptive integration.

Adaptive programs can be found also at

https://ww2.odu.edu/~agodunov/computing.html
Fortran: 
adaptive integration based on Simpson rule (simpson2.f90), 
based on Gauss quadratures (gauss2.f90), adaptive integration using 
recursive calls (gaussA.f90), adaptive integration based on Newton-
Cotes quadrature (quanc8.f)

C++
adaptive integration based on Newton-Cotes quadrature (quanc8.cpp)
Matlab
adaptive integration based on Newton-Cotes quadrature (quanc8.m)

42

42

https://ww2.odu.edu/~agodunov/computing.html
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Part 3: 

Special topics

43

Improper integrals: Type 1 – Infinite interval

%
*

3

𝑓 𝑥 𝑑𝑥 	 %
(3

3

𝑓 𝑥 𝑑𝑥

There several tricks one could use to treat 

1. Transform variable of integration so that the new interval is finite: 
example: use 𝑦 = exp(−𝑥), then 0, ∞  goes into [1,0] 
(but –do not  introduce singularities)

2. Replace infinite limits of integration by carefully chosen finite values, 
or use approach to the limit 

3. Use asymptotic behavior (if possible) to evaluate the “tail” 
contribution.

4. Use nonlinear quadrature rules designed for infinite intervals 

44

44

Example: Replacing infinite limits 

Generically we can replace infinite-limits with a finite value and then take 
the limit numerically

%
*

3

𝑓 𝑥 𝑑𝑥 = lim
.→3

%
*

.

𝑓 𝑥 𝑑𝑥

We can, for example, define the upper bound 𝑟& = 2&  , and consider the 
following integral

𝐼& = %
*

.5 𝑒(6

𝑥+ + 1
𝑑𝑥

45

45

Example: Using asymptotic behavior 

%
*

3 𝑥
𝑥' + 1

𝑑𝑥 = %
*

! 𝑥
𝑥' + 1

𝑑𝑥 +%
!

3 𝑥
𝑥' + 1

𝑑𝑥

for𝑎 ≫ 1 we use the asymptotic behavior of the function

%
!

3 𝑥
𝑥' + 1

𝑑𝑥 ≈ %
!

3 𝑥
𝑥'

𝑑𝑥 = %
!

3 1

𝑥
)
'

𝑑𝑥 =
2
𝑎

Then

%
*

3 𝑥
𝑥' + 1

𝑑𝑥 ≈ %
*

! 𝑥
𝑥' + 1

𝑑𝑥 +
2
𝑎

46

46

Improper integrals: Type 2 – discontinuous integrands

Example

%
*

%

𝑓 𝑥 𝑑𝑥

when 𝑓 𝑥  is discontinuous at 0.

Formal definition

%
*

%

𝑓 𝑥 𝑑𝑥 = lim
7→*

%
7

%

𝑓 𝑥 𝑑𝑥

Proceeding to the limit

%
*

%

𝑓 𝑥 𝑑𝑥 𝑅 = %
89

%

𝑓 𝑥 𝑑𝑥 + %
8:

89
𝑓 𝑥 𝑑𝑥 + ⋯	 𝑅& = 2(&

Other methods: change variables, elimination of singularity, Gauss type 
quadratures, … 47

47

Example: 

%
*

% 𝑥
𝑒6 − 1

𝑑𝑥 = 0.77750463

 
 Simpson   =         -NaN

 Integral Quanc8  =         -NaN
 Tolerance        =   0.00000001
 Tol. estimated   =          NaN
 Function calls   =         4113

 Adaptive G7K15   =   0.77750463
 Tolerance        =   0.00000001
 Tol. estimated   =   0.00000000
 Function calls   =           15

 Adaptive G10K21  =   0.77750463
 Tolerance        =   0.00000001
 Tol. estimated   =   0.00000000
 Function calls   =           21 48
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48
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Improper integrals: Type 3 – integrable singularity

%
!

" 𝑓(𝑥)
𝑥 − 𝑐

𝑑𝑥 	 𝑎 ≤ 𝑐 ≤ 𝑏

Method 1.

write 𝑓 𝑥 = 𝑔 𝑥 + ℎ(𝑥) where 𝑔(𝑥) can be integrated numerically, and 
ℎ(𝑥) can be done analytically

Example: problem at 𝑥 = 0

𝑓 𝑥 =
1

𝑥(1 + 𝑥')

𝑓 𝑥 =
1

𝑥(1 + 𝑥')
=

1

𝑥(1 + 𝑥')
−

1
𝑥	

+
1
𝑥	

49

49

Improper integrals: Type 3 – integrable singularity

%
!

" 𝑓(𝑥)
𝑥 − 𝑐

𝑑𝑥 	 𝑎 ≤ 𝑐 ≤ 𝑏

Method 2.

write 𝑓 𝑥 = 𝜌 𝑥 ℎ(𝑥) where	𝜌(𝑥) is one of known functions for a 
quadrature, like Gauss-Christoffel, Jacobi, Chebyshev, …

Method 3:

Using non-standard quadrature rules allowing explicitly for the singularity

50

50

Improper integrals: Type 4 – Principal value integrals

lim
;→*

%
*

3 𝑓(𝑥)
𝑥 − 𝑥* ± 𝜀

𝑑𝑥 = 𝑃𝑉 %
*

3 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥 ∓ 𝑖𝜋𝑓(𝑥*)

The definition of the principal value integral

𝑃𝑉 %
!

" 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥 = lim
<→*

%
!

6=(< 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥 + %
6=1<

" 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥

We can use proceeding to the limit for the integral.

51

51

Improper integrals: Type 4 – Principal value integrals

Suppose 𝑓(𝑥) is unbounded in the neighborhood of 𝑥 = 𝑐 so that the 
principal value of the integral is

𝑃𝑉 %
!

"

𝑓(𝑥)𝑑𝑥 = lim
<→*

%
!

6=(<

𝑓(𝑥)𝑑𝑥 + %
6=1<

"

𝑓(𝑥)𝑑𝑥

Let us take 𝑐 = 0, and the limits of the integral are from −𝑎 to 𝑎.

𝑔 𝑥 =
1
2
𝑓 𝑥 − 𝑓 −𝑥 , 	ℎ 𝑥 =

1
2
𝑓 𝑥 + 𝑓 −𝑥

It is possible to show that (see Davis and Rabinowitz, page 182)

𝑃𝑉 %
(!

!

𝑓(𝑥)𝑑𝑥 = %
(!

!

(𝑓 𝑥 + 𝑓 −𝑥 )𝑑𝑥

52

52

Integration of rapidly oscillatory functions

Example

%
!

"

𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥

Recommendation: use methods or programs specially designed to 
calculate integrals with oscillating functions, e.g., Filon’s method, 
Clenshaw-Curtis method, …

Methods: integration between zeros,
use of Gauss rules for Fourier coefficients,
use of Chebyshev and Legendre expansions 
and many more

53

53

Other cases

• Integration of periodic functions*

• Slowly convergent integrals

• Singular integrals

• Integrating tabular data

• Contour integrals

• Indefinite integrals (integration via differential equations)

*see also Fast Fourier Transform (FFT)
54

54
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Part 4: 

Multidimensional integration

55

Principal challenges

The difficulty of integration is greatly increased when passing from one 
dimension to several dimensions.

1. The behavior of functions of several variables can be considerably 
more complicated than that of functions of one variable 

2. it usually takes much more time to evaluate a function of several 
variables. 
As the dimension becomes higher, more and more points are 
necessary for successful approximation, and even with current 
computing speeds the number of functional evaluations may be an 
important consideration. The necessity for economization has, in 
fact, led to approximate integration by Monte Carlo methods.

56

56

Before actually integrating …

Try to make it easier to integrate numerically

1. Change of order of integration

2. Change of variables

57

57

Principal strategies for nD integration

1. Use automatic one-dimensional quadrature routine for each 
dimension, one for outer integral another for inner integral, etc.

2. Use Monte Carlo method

3. For 2D integrals it’s possible to use cubature integration 
(e.g. cubature trapezoid rule as a product of one-dimensional rules)

Some numerical libraries have routines for 2D and 3D integration

For example, Matlab has integral2, integral3.

58

58

Example: 2D sequential integration

59

! MAIN PART
a = 0.0
b = 1.0
eps = 1.0e-7
integral = simpson2D(f,a,b,eps)
stop
End

Function f(x)
common/fxy/x1
external g
c = 0.0
d =  sin(x)
x1 = x                     ! x1 passes the value of x to g(y)
 f = simpson2D(g,c,d,eps)
return
end
Function g(y)
common/fxy/x
g = (x+y)**2
return
end 

%
*

%

𝑑𝑥 %
*

>?@(6)

𝑥 + 𝑦 ' 𝑑𝑦 = 0.48258512 

59

Part 5: 

Summary

60
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Very practical books

, …

61

61

A course of actions

1. Plot the function - A picture is worth a thousand words

2. Analyze the function: smooth or oscillating,   functions with 
singularities, narrow peaks, …

3. Analyze the type of integral (regular, improper, …)

4. Can you transform the integral to a simpler form?

5. Select a method that fits the function and the integral 

6. Always test any program for integration before using for your 
calculations.

62

62


