
1

Numerical Integration II
A. Godunov

1. Gaussian quadrature
2. Automatic and Adaptive Integration
3. Special topics
4. Multidimensional integration
5. Summary

1

Part 1:

Gaussian quadrature

2

Key idea

The idea behind Gaussian quadrature is to approximate the integral of
the desired function, 𝑓(𝑥), in terms of the weighted sum of the function
evaluated at some systematically chosen points.

%
!

"

𝑓 𝑥 𝑑𝑥 ≈ (
#$%

&

𝐶#𝑓(𝑥#)

Although this looks almost exactly the same as the previously
considered techniques, the key difference is how we obtained the
values of 𝑥# and 𝐶# .

When the locations 𝑥# are prespecified, this approach yields the best
possible result.

Attention: the function should be a known function, such that we can
evaluate 𝑓(𝑥#) at any given point.

3

3

Additional degree of freedom

%
!

"

𝑓 𝑥 𝑑𝑥 ≈ (
#$%

&

𝐶#𝑓(𝑥#)

If 𝑛 points are used, 2𝑛 parameters are available: 𝑥# 	(𝑖 = 1, 2, … , 𝑛)	and
𝐶#(𝑖 = 1, 2, … , 𝑛).

With 2𝑛 parameters it is possible to fit a polynomial of degree 2𝑛 − 1.

Gaussian integration (or Gaussian quadrature) produces higher
accuracy than the Newton-Cotes formulas with the same number of
function evaluations.

If the function to integrate is not smooth, then Gaussian quadrature may
give lower accuracy

4

4

Procedure

1. Gaussian quadrature formulas are obtained by choosing the 𝑛
values of 𝑥# and 𝐶# so that the integral of a polynomial of degree
2𝑛 − 1 is exact, i.e. if 𝑓(𝑥) ≈ 𝑃'&(%(𝑥) then

%
!

"

𝑃'&(%(𝑥)𝑑𝑥 = (
#$%

&

𝐶#𝑃'&(%(𝑥#)

2. Use these same values of {𝑥# , 𝐶#} for any other smooth function.

5

5

Gaussian quadrature for n=2 (2n-1=3)

𝑃)(𝑥) = 𝑎* + 𝑎%𝑥 + 𝑎'𝑥' + 𝑎)𝑥)

Left-hand side

%
!

"
𝑎* +𝑎%𝑥 +𝑎'𝑥' +𝑎)𝑥) 𝑑𝑥 = 𝑎*𝑥 +𝑎%

𝑥'
2 +𝑎'

𝑥)
3 +𝑎)

𝑥+
4 !

"

=

= 𝑎* 𝑏 −𝑎 +𝑎%
𝑏' −𝑎'

2 +𝑎'
𝑏) −𝑎)

2 +𝑎)
𝑏+ −𝑎+

4

Right-hand side

𝐶%𝑃) 𝑥% +𝐶'𝑃) 𝑥' = 𝐶% 𝑎* +𝑎%𝑥% +𝑎'𝑥%' +𝑎)𝑥%) +𝐶' 𝑎* +𝑎%𝑥' +𝑎'𝑥'' +𝑎)𝑥')

= 𝑎* 𝐶% +𝐶' +𝑎% 𝐶%𝑥% +𝐶'𝑥' +𝑎' 𝐶%𝑥%' +𝐶'𝑥'' +𝑎)(𝐶%𝑥%) +𝐶'𝑥'))

Next, we want to match the left-hand side (LHS) and the right-hand side (RHS)

6

!
!

"
𝑃'&(%(𝑥)𝑑𝑥 =(

#$%

&

𝐶#𝑃'&(%(𝑥#)

6

2

Gaussian quadrature for n=2 (cont.)

𝑎* 𝑏 −𝑎 +𝑎%
𝑏' −𝑎'

2 +𝑎'
𝑏) −𝑎)

2 +𝑎)
𝑏+ −𝑎+

3 =

= 𝑎* 𝐶% +𝐶' +𝑎% 𝐶%𝑥% +𝐶'𝑥' +𝑎' 𝐶%𝑥%' +𝐶'𝑥'' +𝑎) 𝐶%𝑥%) +𝐶'𝑥')

Four unknowns and four equations and the solutions

𝑏 −𝑎 = 𝐶% +𝐶'

𝑏' −𝑎'

2 = 𝐶%𝑥% +𝐶'𝑥'

𝑏) −𝑎)

3 = 𝐶%𝑥%' +𝐶'𝑥''

𝑏+ −𝑎+

4 = 𝐶%𝑥%) +𝐶'𝑥')

7

𝐶% =
𝑏−𝑎
2

𝐶' =
𝑏−𝑎
2

𝑥% =
𝑏−𝑎
2 −

1
3
+
𝑏+𝑎
2

𝑥% =
𝑏−𝑎
2 +

1
3
+
𝑏+𝑎
2

7

Parameterization

Gaussian quadrature is typically written in terms of a parameter 𝑡,
defined via

𝑥 =
𝑏 − 𝑎
2

𝑡 +
𝑏 + 𝑎
2

.

This replaces the integration range from 𝑥 ∈ [𝑎, 𝑏] to 𝑡 ∈ [−1, +1].

If we define 𝐹 𝑡 ≡ 𝑓[𝑥 𝑡] and redefine 𝐶# as ⁄𝐶# ⇒ 𝐶#(𝑏 − 𝑎) 2 then the
Gaussian quadrature can be written as

%
!

"

𝑓(𝑥) 𝑑𝑥 =
𝑏 − 𝑎
2

%
(%

%

𝐹 𝑡 𝑑𝑡 =
𝑏 − 𝑎
2

(
#$%

&

𝐶#𝐹 𝑡#

There is no inherent advantage of this form, since they are
mathematically identical, but it is common in the literature.

8

8

Re-deriving the previous result

With this, we can re-derive the values of {𝑡% , 𝑡' , 𝐶%𝐶'} by asserting that
the integrals are exact for 𝐹 𝑡 = 1 + 	𝑡 + 𝑡' + 𝑡) . This gives four
different constraints,

%
(%

%

1𝑑𝑡 = 2 = 𝐶% + 𝐶'

%
(%

%

𝑡𝑑𝑡 = 0 = 𝐶%𝑡% + 𝐶'𝑡'

%
(%

%

𝑡'𝑑𝑡 =
2
3
= 𝐶%𝑡%' + 𝐶'𝑡''

%
(%

%

𝑡)𝑑𝑡 = 0 = 𝐶%𝑡%) + 𝐶'𝑡')

Solving the system … 𝐶% = 1, 𝐶' = 1, 𝑡% = −𝑡' = ⁄1 3
9

%
(%

%

𝐹(𝑡)𝑑𝑡 = 𝐹 −
1
3

+ 𝐹 +
1
3

!
(%

%
𝐹(𝑡)𝑑𝑥 =(

#$%

&

𝐶#𝐹(𝑡#)

9

Gaussian quadrature parameters

We can summarize the values for {𝑡# , 𝐶#} polynomials of second, third
and fourth order.

10

10

Example: 4-point Gaussian quadrature C++

11

/* Numerical integration of f(x) on [a,b]
 method: Gauss (4 points)

input:
 f - a single argument real function
 a,b - the two end-points (interval of integration)

output: r - result of integration
*/
 double gauss4(double(*f)(double), double a, double b)

{
 const int n = 4;
 double ti[n] = {-0.8611363116, -0.3399810436,

 0.3399810436, 0.8611363116};
 double ci[n] = { 0.3478548451, 0.6521451549,

 0.6521451549, 0.3478548451};
 double r, m, c;
 r = 0.0;
 m = (b-a)/2.0;
 c = (b+a)/2.0;
 for (int i = 1; i <= n; i=i+1)
 {r = r + ci[i-1]*f(m*ti[i-1] + c); }
 r = r*m;
 return r;

}

11

Example: 8-point Gaussian quadrature C++

12

/* Numerical integration of f(x) on [a,b]
 method: Gauss (8 points using symmetry)

input:
 f - a single argument real function
 a,b - the two end-points (interval of integration)

output: r - result of integration */
 double gauss8(double(*f)(double), double a, double b)

{
 const int n = 4;
 double ti[n] = {0.1834346424, 0.5255324099,

 0.7966664774, 0.9602898564};
 double ci[n] = {0.3626837833, 0.3137066458,

 0.2223810344, 0.1012285362};
 double r, m, c;
 r = 0.0;
 m = (b-a)/2.0;
 c = (b+a)/2.0;
 for (int i = 1; i <= n; i=i+1)
 {r=r+ci[i-1]*(f(m*(-1.0)*ti[i-1]+c)+f(m*ti[i-1]+c));
 }
 r = r*m;
 return r;

}

12

3

Example: Python (both 4- and 8-points)

13

Same thing except both cases built into one and slightly
different syntax

13

Example

Now let’s evaluate the integral considered before sing Trapezoid,
Simpson and Gaussian quad. with 4 and 8 points…
Intervals Trapez. Simpson

 2 1.570796 2.094395 Gauss4 = 1.999984
 4 1.896119 2.004560 Gauss8 = 2.000000
 8 1.974232 2.000269
 16 1.993570 2.000017
 32 1.998393 2.000001
 64 1.999598 2.000000
 128 1.999900 2.000000
 256 1.999975 2.000000
 512 1.999994 2.000000
 1024 1.999998 2.000000
 2048 2.000000 2.000000

14

%
*

,
sin𝑥𝑑𝑥 = 2.0

14

Generalized Gaussian quadratures

Gaussian method can be generalized to a wider class of integrals

%
!

"

𝑔 𝑥 𝑓 𝑥 𝑑𝑥

Tables with coefficients can be found in “Handbook of Mathematical Functions,
With Formulas, Graphs, and Mathematical Tables” by Abramowitz and Stegun.

15

15

Part 2:

Automatic and adaptive integration

16

Automatic integration

“The aim of an automatic integration scheme is to relieve the person who
has to compute an integral of any need to think.”

Davis P. J., and P. Rabinowitz, Methods of Numerical Integration (Dover,
2nd edition) (2007)

• While any desired accuracy (within round-off limits) can be obtained
by taking smaller and smaller increments, this approach is generally
undesirable, since evaluation of the integrand function 𝑓(𝑥) is the
most time-consuming portion of the calculation.

• Imagine that you do not know how many intervals are needed to
achieve convergence.

17

17

Automatic integration from user perspective

User-friendly routines where the user enters

1. the limits of integration

2. the routine for computation of 𝑓(𝑥),

3. the tolerance 𝜀,

4. the upper bound 𝑁 for the number of functional computations.

Then the program exits either

a) with the computed value which is correct within the 𝜀

b) or with a statement that the upper bound 𝑁 was attained but the
tolerance was not achieved, and the computed result may be the
"best“ value of the integral determined by the program.

18

18

4

Objectives of automatic integration

Get a value 𝐼 of the integral, which is allegedly correct to within the
tolerance, that is,

𝐼 − %
!

"

𝑓(𝑥) 𝑑𝑥 ≤ 𝜀

or

𝐼 − ∫!
" 𝑓 𝑥 𝑑𝑥

∫!
" 𝑓(𝑥) 𝑑𝑥

≤ 𝜀

or both

𝐼 − %
!

"

𝑓(𝑥) 𝑑𝑥 ≤ max 𝜀!"- , 𝜀./0 %
!

"

𝑓(𝑥) 𝑑𝑥

where 𝜀!"- and 𝜀./0 are absolute and relative tolerances, respectively. 19

19

General exit criterion for automatic integration

Assume 𝐼%(𝑓), 𝐼'(𝑓), … 𝐼&(𝑓), 𝐼&1%(𝑓) are iterative refinements of the
integral, then the program exits and prints out the value 𝐼 &1% 𝑓 .

If the upper bound 𝑁 is achieved without a "yes" to the criterion, the
program selects the value of 𝑛 for which

𝐼&1% 𝑓 − 𝐼&(𝑓) = 𝑐&

is minimum, and prints out both 𝐼&(𝑓) and the difference 𝑐& .

20

20

Efficiency

One of goals of automatic integration is to achieve the desired accuracy
with the minimum number of integrand function evaluations

Therefore it is wise to choose rules of integration in such a way that all or
almost all the information gathered at the nth stage is not discarded but is
used in forming the (n + 1)th stage.

Examples of this are the trapezoidal rules using 22 + 1 points, the
Gauss-Kronrod sequence, the generalized composite Newton-Cotes
rules, i.e., rules in which a particular Newton-Cotes integration rule
(usually closed and containing an odd number of points) is used in each
subinterval of a general partition of the interval of integration.

21

21

Required qualities of automatic integration

The qualities required of an automatic integrator are efficiency, reliability,
and robustness.

Efficiency is usually measured by either the amount of computer time or
the number of integrand evaluations required to calculate a set of
integrals.

A reliable program is one that if it exits successfully, then we are
reasonably certain that the magnitude of the actual error does not
exceed the requested tolerance.

Robustness which means that the program will integrate correctly a
broad range of integrals with an occasional failure.

It is virtually impossible to satisfy to highest degree all three qualities in
one program.

22

22

Two possibilities for automatic integration

1. The non-adaptive schemes: the integration points are chosen in a
fixed manner which is independent of the nature of the integrand,
although the number of these points depends on the integrand -
continue to subdivide all subintervals, say by half, until overall error
estimate falls below desired tolerance
Not an inefficient way, but easy to implement.

2. The adaptive schemes: the points at which the integration is carried
out are chosen in a manner that is dependent on the nature of the
integrand – the domain of integration is selectively refined to reflect
behavior of particular integrand function on a specific subinterval.
Generally very efficient, but implementation can be challenging

23

23

The non-adaptive schemes

Generally increasing number of interval and compare results, for
example for 𝐼 ℎ , 𝐼 ⁄ℎ 2 , 𝐼 ⁄ℎ 4 …	till the tolerance is achieved as
𝐼 ⁄ℎ 𝑛 − 𝐼(⁄ℎ 2𝑛) ≤ 𝜀, where ℎ the initial size of the intervals,

and 𝑛 = 1,2 …

24

24

5

Example: Non-adaptive Simpson rule

25

Subroutine simpson2(f,a,b,eps,integral,nint)
!==
! Integration of f(x) on [a,b]
! Method: Simpson rule with doubling number of intervals
! till error = coeff*|I_n - I_2n| < eps
… here we declare data types
nmax=16384
coeff = 1.0/15.0
h = (b-a)/2.0
sn = (1.0/3.0)*h*(f(a)+4.0*f(a+h)+f(b))
! loop over number of intervals (starting from 4 intervals)
n=4
do while (n <= nmax)
 s2n = 0.0
 h = (b-a)/dfloat(n)
 do i=2, n-2, 2
 x = a+dfloat(i)*h
 s2n = s2n + 2.0*f(x) + 4.0*f(x+h)
 end do
 s2n = (s2n + f(a) + f(b) + 4.0*f(a+h))*h/3.0
 if(coeff*abs(s2n-sn) <= eps) then
 integral = s2n + coeff*(s2n-sn)
 nint = n
 exit
 end if
 sn = s2n
 n = n*2
end do
return
end subroutine simpson2

25

The adaptive schemes

Adaptive integration is a generic name denoting a strategy to achieve
the desired accuracy with the minimum number of integrand function
evaluations.

The overall range of integration is broken into several subranges, and
each subrange is evaluated to the desired accuracy by subdividing each
individual subrange as required until the desired accuracy is obtained.

26

26

Strategies for adaptive algorithms

There are very many approaches to adaptive integration. Here is an
example using doubling of subintervals

27

27

Example: Simpson adaptive integration (Fortran)

28

Subroutine simpson1(f,a,b,eps,sum,nfun)
!==
! Integration of f(x) on [a,b]
! Method: adaptive non-recursive Simpson rule
! written by: Alex Godunov
!--
… data types here (not typed to save space)
integer, parameter :: im=64, nmax=5000
! *** stage 1 ***
! initialization for level 1 (top level)
sum = 0
i = 1
imax = im
x(1) = a
h(1) = (b-a)/2.0
fa(1) = f(a)
fm(1) = f(a+h(1))
fb(1) = f(b)
tol(1) = 15.0*eps
il(1) = 1
! Simpson's method for [a,b]
s(1) = h(1)*(fa(1)+4*fm(1)+fb(1))/3.0
nfun = 3
! *** stage 2 ***
! main part: adaptive integration
do while (i > 0)
! *** stage 2a ***
! calculate function values at h/2 and 3h/2
 f1 = f(x(i) + h(i)/2.0)
 f3 = f(x(i) + 3.0*h(i)/2.0)
 nfun = nfun + 2

28

cont.

29

! Simpson's integrals for the left and right intervals
 s1 = h(i)*(fa(i)+4.0*f1+fm(i))/6.0
 s2 = h(i)*(fm(i)+4.0*f3+fb(i))/6.0
! *** stage 2b ***
! save data at this level
 x0 = x(i)
 f0 = fa(i)
 f2 = fm(i)
 f4 = fb(i)
 step = h(i)
 err = tol(i)
 s0 = s(i)
 deep = il(i)
! *** stage 2c ***
! the current level has been computed
 i=i-1
! *** stage 2d ***
! local condition for convergence
 if(abs(s1+s2-s0) <= err) then
 sum = sum + (s1+s2)
 else
! *** stage 2e ***
! check if the code can continue to subdivide intervals
 if(deep >= imax) then ! stop integration
 write (6,200)
 write (6,201) deep
 exit
 else

29

cont.

30

! *** stage 2f ***
! make smaller intervals (i.e. h=h/2)
! data for the right subinterval
 i = i+1
 x(i) = x0 + step
 fa(i) = f2
 fm(i) = f3
 fb(i) = f4
 h(i) = step/2.0
 tol(i)= err/2.0
 s(i) = s2
 il(i) = deep + 1
! data for the left subinterval
 i = i+1
 x(i) = x0
 fa(i) = f0
 fm(i) = f1
 fb(i) = f2
 h(i) = h(i-1)
 tol(i)= tol(i-1)
 s(i) = s1
 il(i) = il(i-1)
 end if
 end if
end do
200 format(/,6x,'Required accuracy can not be achieved')
201 format(6x,'The level h/2 for subintervals is = ',i8)
return
end subroutine simpson1

30

6

Example: with recursive function

31

recursive function gauss_a(f,a,b,eps)
!==
! Integration of f(x) on [a,b]
! Method: Gauss quadratures with adaptive integration
! for left/right intervals till error = |I_16 - I_8| < eps
!--
! f - Function to integrate (supplied by a user)
! a - Lower limit of integration
! b - Upper limit of integration
! eps - tolerance (should not be less than 1.0e-8)
! OUT:
! gauss_a - Result of integration
!==
implicit none
double precision gauss_a, f, a, b, eps, gauss8, gauss16
double precision s1, s2, h, ax, bx, sum
integer i
external f
if(eps <= 1.0e-8) eps = 1.0e-8
h = (b-a)/2.0
sum = 0.0
do i=1,2
 ax = a + h*dfloat(i-1)
 bx = ax + h
 s1 = gauss8(f,ax,bx)
 s2 = gauss16(f,ax,bx)
 if(abs(s2-s1)<= eps .and. abs(s2-s1)/abs(s2+s1)<= eps) then
 sum = sum + s2
 else
 sum = sum + gauss_a(f,ax,bx,eps)
 end if
end do
gauss_a = sum
return
end function gauss_a

31

Example: Quanc8 - efficient, reliable and robust (C++)

32

void quanc8(double(*fun)(double), double a, double b,
 double abserr, double relerr,
 double& result, double& errest, int& nofun,double& flag)
/*
 estimate the integral of fun(x) from a to b to a user provided tolerance.
 an automatic adaptive routine based on the 8-panel newton-cotes rule.
input:
 fun the name of the integrand function subprogram fun(x).
 a the lower limit of integration.
 b the upper limit of integration.(b may be less than a.)
 relerr a relative error tolerance. (should be non-negative)
 abserr an absolute error tolerance. (should be non-negative)
output:
 result an approximation to the integral hopefully satisfying the
 least stringent of the two error tolerances.
 errest an estimate of the magnitude of the actual error.
 nofun the number of function values used in calculation of result.
 flag a reliability indicator. if flag is zero, then result
 probably satisfies the error tolerance. if flag is
 xxx.yyy , then xxx = the number of intervals which have
 not converged and 0.yyy = the fraction of the interval
 left to do when the limit on nofun was approached.
comments:
 written by Alex Godunov
 the program is based on a fortran version of program quanc8.f
*/
{
 double w0,w1,w2,w3,w4,area,x0,f0,stone,step,cor11,temp;
 double qprev,qnow,qdiff,qleft,esterr,tolerr;
 double qright[32], f[17], x[17], fsave[9][31], xsave[9][31];
 double dabs,dmax1;
 int levmin,levmax,levout,nomax,nofin,lev,nim,i,j;
 int key;

32

cont.

33

// *** stage 1 *** general initialization
 levmin = 1;
 levmax = 30;
 levout = 6;
 nomax = 5000;
 nofin = nomax - 8*(levmax - levout + 128);
// trouble when nofun reaches nofin
 w0 = 3956.0 / 14175.0;
 w1 = 23552.0 / 14175.0;
 w2 = -3712.0 / 14175.0;
 w3 = 41984.0 / 14175.0;
 w4 = -18160.0 / 14175.0;
// initialize running sums to zero.
 flag = 0.0;
 result = 0.0;
 cor11 = 0.0;
 errest = 0.0;
 area = 0.0;
 nofun = 0;
 if (a == b) return;
// *** stage 2 *** initialization for first interval
 lev = 0;
 nim = 1;
 x0 = a;
 x[16] = b;
 qprev = 0.0;
 f0 = fun(x0);
 stone = (b - a) / 16.0;
 x[8] = (x0 + x[16]) / 2.0;
 x[4] = (x0 + x[8]) / 2.0;
 x[12] = (x[8] + x[16]) / 2.0;
 x[2] = (x0 + x[4]) / 2.0;
 x[6] = (x[4] + x[8]) / 2.0;
 x[10] = (x[8] + x[12]) / 2.0;
 x[14] = (x[12] + x[16]) / 2.0;

33

cont.

34

for (j=2; j<=16; j = j+2)
 {
 f[j] = fun(x[j]);
 }
 nofun = 9;
// *** stage 3 *** central calculation
 while(nofun <= nomax)
 {
 x[1] = (x0 + x[2]) / 2.0;
 f[1] = fun(x[1]);
 for(j = 3; j<=15; j = j+2)
 {
 x[j] = (x[j-1] + x[j+1]) / 2.0;
 f[j] = fun(x[j]);
 }
 nofun = nofun + 8;
 step = (x[16] - x0) / 16.0;
 qleft = (w0*(f0 + f[8]) + w1*(f[1]+f[7]) + w2*(f[2]+f[6])
 + w3*(f[3]+f[5]) + w4*f[4]) * step;
 qright[lev+1] = (w0*(f[8]+f[16])+w1*(f[9]+f[15])+w2*(f[10]+f[14])
 + w3*(f[11]+f[13]) + w4*f[12]) * step;
 qnow = qleft + qright[lev+1];
 qdiff = qnow - qprev;
 area = area + qdiff;
// *** stage 4 *** interval convergence test
 esterr = fabs(qdiff) / 1023.0;
 if(abserr >= relerr*fabs(area))
 tolerr = abserr;
 else
 tolerr = relerr*fabs(area);
 tolerr = tolerr*(step/stone);

34

cont.

35

// multiple logic conditions for the convergence test
 key = 1;
 if (lev < levmin) key = 1;
 else if (lev >= levmax)
 key = 2;
 else if (nofun > nofin)
 key = 3;
 else if (esterr <= tolerr)
 key = 4;
 else
 key = 1;
 switch (key) {
// case 1 ********************************* (mark 50)
 case 1:
// *** stage 5 *** no convergence
// locate next interval.
 nim = 2*nim;
 lev = lev+1;
// store right hand elements for future use.
 for(i=1; i<=8; i=i+1)
 {
 fsave[i][lev] = f[i+8];
 xsave[i][lev] = x[i+8];
 }
// assemble left hand elements for immediate use.
 qprev = qleft;
 for(i=1; i<=8; i=i+1)
 {
 j = -i;
 f[2*j+18] = f[j+9];
 x[2*j+18] = x[j+9];
 }
 continue; // go to start of stage 3 "central calculation"
 break;

35

cont.

36

// case 2 ********************************* (mark 62)
 case 2:
 flag = flag + 1.0;
 break;
// case 3 ********************************* (mark 60)
 case 3:
// *** stage 6 *** trouble section
// number of function values is about to exceed limit.
 nofin = 2*nofin;
 levmax = levout;
 flag = flag + (b - x0) / (b - a);
 break;
// case 4 ********************************* (continue mark 70)
 case 4:
 break;
// default ******************************** (continue mark 70)
 default:
 break;
// end case section ***********************
}
// *** stage 7 *** interval converged
// add contributions into running sums.
 result = result + qnow;
 errest = errest + esterr;
 cor11 = cor11 + qdiff / 1023.0;
// locate next interval
 while (nim != 2*(nim/2))
 {
 nim = nim/2;
 lev = lev-1;
 }
 nim = nim + 1;
 if (lev <= 0) break; // may exit futher calculation

36

7

cont.

37

// assemble elements required for the next interval.
 qprev = qright[lev];
 x0 = x[16];
 f0 = f[16];
 for (i =1; i<=8; i=i+1)
 {
 f[2*i] = fsave[i][lev];
 x[2*i] = xsave[i][lev];
 }
}
// *** end stage 3 *** central calculation
// *** stage 8 *** finalize and return
 result = result + cor11;
// make sure errest not less than roundoff level.
 if (errest == 0.0) return;
 do
 {
 temp = fabs(result) + errest;
 errest = 2.0*errest;
 }
 while (temp == fabs(result));
 return;
}

37

Example: eps=10-8

%
*

,

sin 𝑥 𝑑𝑥

 Adaptive Simpson = 2.00000001
 Tol. estimated = 0.00000001
 Function calls = 121

 Integral Quanc8 = 2.00000000
 Tol. estimated = 0.00000000
 Function calls = 33

 Adaptive G7K15 = 2.00000000
 Tol. estimated = 0.00000000
 Function calls = 15

 Adaptive G10K21 = 2.00000000
 Tol. estimated = 0.00000000
 Function calls = 21

38

38

Example: eps=10-8

%
*

, 𝑥 cos(10𝑥')
𝑥' + 1

𝑑𝑥

 Adaptive Simpson = 0.00031559
 Tol. estimated = 0.00000000
 Function calls = 3605

 Integral Quanc8 = 0.00031559
 Tol. estimated = 0.00000000
 Function calls = 705

 Adaptive G7K15 = 0.00031559
 Tol. estimated = 0.00000000
 Function calls = 615

 Adaptive G10K21 = 0.00031559
 Tol. estimated = 0.00000001
 Function calls = 399

39

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

39

What to do if …?

Suppose that an automatic integration scheme is applied to a function
𝑓(𝑥) over an interval [𝑎, 𝑏] with a given error tolerance 𝜀 and exits with
an indication of failure. What is one to do next?

1. Increase, if possible, the number of functional evaluations allowed.

2. Raise the error tolerance 𝜀.

3. Subdivide the interval [𝑎, 𝑏] into two or more subintervals, preferably
in a random manner, and apply the integration scheme separately
on each subinterval.

4. Try a different automatic integration scheme, perhaps one with
special features suitable for the integrand in question.

5. Try to locate the interior singularities of the integrand and integrate
between them, thus converting interior singularities to endpoint
singularities which are much more tractable. 40

40

Attention

Adaptive programs tend to be effective in practice …
but it can be fooled.
Interval of integration may be very wide but
“interesting" behavior of integrand is confined to
narrow range

Sampling by automatic routine may miss interesting
part of integrand behavior, and resulting value for
integral may be completely wrong.

Such examples can be found in the excellent book
by Davis and Rabinowitz, chapter 6.

41

41

Libraries

All respected numerical libraries have routines for adaptive integration.

Adaptive programs can be found also at

https://ww2.odu.edu/~agodunov/computing.html
Fortran:
adaptive integration based on Simpson rule (simpson2.f90),
based on Gauss quadratures (gauss2.f90), adaptive integration using
recursive calls (gaussA.f90), adaptive integration based on Newton-
Cotes quadrature (quanc8.f)

C++
adaptive integration based on Newton-Cotes quadrature (quanc8.cpp)
Matlab
adaptive integration based on Newton-Cotes quadrature (quanc8.m)

42

42

https://ww2.odu.edu/~agodunov/computing.html

8

Part 3:

Special topics

43

Improper integrals: Type 1 – Infinite interval

%
*

3

𝑓 𝑥 𝑑𝑥 	 %
(3

3

𝑓 𝑥 𝑑𝑥

There several tricks one could use to treat

1. Transform variable of integration so that the new interval is finite:
example: use 𝑦 = exp(−𝑥), then 0, ∞ goes into [1,0]
(but –do not introduce singularities)

2. Replace infinite limits of integration by carefully chosen finite values,
or use approach to the limit

3. Use asymptotic behavior (if possible) to evaluate the “tail”
contribution.

4. Use nonlinear quadrature rules designed for infinite intervals

44

44

Example: Replacing infinite limits

Generically we can replace infinite-limits with a finite value and then take
the limit numerically

%
*

3

𝑓 𝑥 𝑑𝑥 = lim
.→3

%
*

.

𝑓 𝑥 𝑑𝑥

We can, for example, define the upper bound 𝑟& = 2& , and consider the
following integral

𝐼& = %
*

.5 𝑒(6

𝑥+ + 1
𝑑𝑥

45

45

Example: Using asymptotic behavior

%
*

3 𝑥
𝑥' + 1

𝑑𝑥 = %
*

! 𝑥
𝑥' + 1

𝑑𝑥 +%
!

3 𝑥
𝑥' + 1

𝑑𝑥

for𝑎 ≫ 1 we use the asymptotic behavior of the function

%
!

3 𝑥
𝑥' + 1

𝑑𝑥 ≈ %
!

3 𝑥
𝑥'

𝑑𝑥 = %
!

3 1

𝑥
)
'

𝑑𝑥 =
2
𝑎

Then

%
*

3 𝑥
𝑥' + 1

𝑑𝑥 ≈ %
*

! 𝑥
𝑥' + 1

𝑑𝑥 +
2
𝑎

46

46

Improper integrals: Type 2 – discontinuous integrands

Example

%
*

%

𝑓 𝑥 𝑑𝑥

when 𝑓 𝑥 is discontinuous at 0.

Formal definition

%
*

%

𝑓 𝑥 𝑑𝑥 = lim
7→*

%
7

%

𝑓 𝑥 𝑑𝑥

Proceeding to the limit

%
*

%

𝑓 𝑥 𝑑𝑥 𝑅 = %
89

%

𝑓 𝑥 𝑑𝑥 + %
8:

89
𝑓 𝑥 𝑑𝑥 + ⋯	 𝑅& = 2(&

Other methods: change variables, elimination of singularity, Gauss type
quadratures, … 47

47

Example:

%
*

% 𝑥
𝑒6 − 1

𝑑𝑥 = 0.77750463

 Simpson = -NaN

 Integral Quanc8 = -NaN
 Tolerance = 0.00000001
 Tol. estimated = NaN
 Function calls = 4113

 Adaptive G7K15 = 0.77750463
 Tolerance = 0.00000001
 Tol. estimated = 0.00000000
 Function calls = 15

 Adaptive G10K21 = 0.77750463
 Tolerance = 0.00000001
 Tol. estimated = 0.00000000
 Function calls = 21 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

48

9

Improper integrals: Type 3 – integrable singularity

%
!

" 𝑓(𝑥)
𝑥 − 𝑐

𝑑𝑥 	 𝑎 ≤ 𝑐 ≤ 𝑏

Method 1.

write 𝑓 𝑥 = 𝑔 𝑥 + ℎ(𝑥) where 𝑔(𝑥) can be integrated numerically, and
ℎ(𝑥) can be done analytically

Example: problem at 𝑥 = 0

𝑓 𝑥 =
1

𝑥(1 + 𝑥')

𝑓 𝑥 =
1

𝑥(1 + 𝑥')
=

1

𝑥(1 + 𝑥')
−

1
𝑥	

+
1
𝑥	

49

49

Improper integrals: Type 3 – integrable singularity

%
!

" 𝑓(𝑥)
𝑥 − 𝑐

𝑑𝑥 	 𝑎 ≤ 𝑐 ≤ 𝑏

Method 2.

write 𝑓 𝑥 = 𝜌 𝑥 ℎ(𝑥) where	𝜌(𝑥) is one of known functions for a
quadrature, like Gauss-Christoffel, Jacobi, Chebyshev, …

Method 3:

Using non-standard quadrature rules allowing explicitly for the singularity

50

50

Improper integrals: Type 4 – Principal value integrals

lim
;→*

%
*

3 𝑓(𝑥)
𝑥 − 𝑥* ± 𝜀

𝑑𝑥 = 𝑃𝑉 %
*

3 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥 ∓ 𝑖𝜋𝑓(𝑥*)

The definition of the principal value integral

𝑃𝑉 %
!

" 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥 = lim
<→*

%
!

6=(< 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥 + %
6=1<

" 𝑓(𝑥)
𝑥 − 𝑥*

𝑑𝑥

We can use proceeding to the limit for the integral.

51

51

Improper integrals: Type 4 – Principal value integrals

Suppose 𝑓(𝑥) is unbounded in the neighborhood of 𝑥 = 𝑐 so that the
principal value of the integral is

𝑃𝑉 %
!

"

𝑓(𝑥)𝑑𝑥 = lim
<→*

%
!

6=(<

𝑓(𝑥)𝑑𝑥 + %
6=1<

"

𝑓(𝑥)𝑑𝑥

Let us take 𝑐 = 0, and the limits of the integral are from −𝑎 to 𝑎.

𝑔 𝑥 =
1
2
𝑓 𝑥 − 𝑓 −𝑥 , 	ℎ 𝑥 =

1
2
𝑓 𝑥 + 𝑓 −𝑥

It is possible to show that (see Davis and Rabinowitz, page 182)

𝑃𝑉 %
(!

!

𝑓(𝑥)𝑑𝑥 = %
(!

!

(𝑓 𝑥 + 𝑓 −𝑥)𝑑𝑥

52

52

Integration of rapidly oscillatory functions

Example

%
!

"

𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥

Recommendation: use methods or programs specially designed to
calculate integrals with oscillating functions, e.g., Filon’s method,
Clenshaw-Curtis method, …

Methods: integration between zeros,
use of Gauss rules for Fourier coefficients,
use of Chebyshev and Legendre expansions
and many more

53

53

Other cases

• Integration of periodic functions*

• Slowly convergent integrals

• Singular integrals

• Integrating tabular data

• Contour integrals

• Indefinite integrals (integration via differential equations)

*see also Fast Fourier Transform (FFT)
54

54

10

Part 4:

Multidimensional integration

55

Principal challenges

The difficulty of integration is greatly increased when passing from one
dimension to several dimensions.

1. The behavior of functions of several variables can be considerably
more complicated than that of functions of one variable

2. it usually takes much more time to evaluate a function of several
variables.
As the dimension becomes higher, more and more points are
necessary for successful approximation, and even with current
computing speeds the number of functional evaluations may be an
important consideration. The necessity for economization has, in
fact, led to approximate integration by Monte Carlo methods.

56

56

Before actually integrating …

Try to make it easier to integrate numerically

1. Change of order of integration

2. Change of variables

57

57

Principal strategies for nD integration

1. Use automatic one-dimensional quadrature routine for each
dimension, one for outer integral another for inner integral, etc.

2. Use Monte Carlo method

3. For 2D integrals it’s possible to use cubature integration
(e.g. cubature trapezoid rule as a product of one-dimensional rules)

Some numerical libraries have routines for 2D and 3D integration

For example, Matlab has integral2, integral3.

58

58

Example: 2D sequential integration

59

! MAIN PART
a = 0.0
b = 1.0
eps = 1.0e-7
integral = simpson2D(f,a,b,eps)
stop
End

Function f(x)
common/fxy/x1
external g
c = 0.0
d = sin(x)
x1 = x ! x1 passes the value of x to g(y)
 f = simpson2D(g,c,d,eps)
return
end
Function g(y)
common/fxy/x
g = (x+y)**2
return
end

%
*

%

𝑑𝑥 %
*

>?@(6)

𝑥 + 𝑦 ' 𝑑𝑦 = 0.48258512

59

Part 5:

Summary

60

11

Very practical books

, …

61

61

A course of actions

1. Plot the function - A picture is worth a thousand words

2. Analyze the function: smooth or oscillating, functions with
singularities, narrow peaks, …

3. Analyze the type of integral (regular, improper, …)

4. Can you transform the integral to a simpler form?

5. Select a method that fits the function and the integral

6. Always test any program for integration before using for your
calculations.

62

62

