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Part 1: 

Overview
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Motivation

Integrals are everywhere in physics

Some examples:

The kinetic energy– work theorem

Δ𝐾 = 𝐾! − 𝐾" = %
"

!

𝐹⃗ ⋅ 𝑑𝑟

Maxwell’s equations, e.g., Gauss’s law

+𝐸 - 𝑑𝐴 =
1
𝜖#
𝑞$%&

Fourier transforms

𝐹 𝜔 = %
'(

')
𝑒*+,'-𝑓 𝑥 𝑑𝑥
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Methods for evaluating integrals

Integrals can be evaluated using

• exact integration (analytically when possible)

• simple numerical methods

• advanced numerical methods

We use numerical integration when

• if we cannot get an analytic answer using 
(many known functions, do not have an exact integral)

• the function 𝑓(𝑥), which is to be integrated, may be a set of discrete 
data. 
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Exact integration

Standard techniques of integration:

• substitution rule, integration by parts, using identities, …

• Tables of integrals

• Computer algebra systems
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Tables of integrals

• Table of Integrals, Series and Products 
by Gradshteyn I. S. and Ryzhik I. M.
Academic Press, 1994 (many editions since 195x) 

• Integral and Series, volumes 1 – 4.
by Prudnikov A P, Brychkov Yu A and Marichev A I
Gordon and Breach, New York, 1986

• Tables of Integrals and Other Mathematical Data
by Herbert B. Dwight 
(very simple integrals, many editions)

• and many more …
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Computer algebra systems

• MatLab - available at ODU

• Mathematica - available at ODU

• WolframAlpha - https://www.wolframalpha.com/
very easy to use

• Python - [Clunky]

• Maple

• Scientific Workplace

• Derive

7

Matlab examples

Here are some simple usage of the int function in MATLAB. 

% symbolic integrals
syms x a

expr = x^2*cos(x);
F = int(expr)
sin(x)*(x^2 - 2) + 2*x*cos(x)

F = int(expr,x)
expr = exp(-a*x)
F = -exp(-a*x)/a

expr = exp(-x^2);
F = int(expr)
(pi^(1/2)*erf(x))/2

expr = exp(-x^2)
F = int(expr,0,inf)
F = pi^(1/2)/2
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Mathematica examples

Here are some simple usage of the Integrate function in Mathematica.
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Part 2: 

Numerical integration: basic concepts
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Concept 1: Use the definition as a Riemann sum

The definition as a Riemann sum

𝐼 = %
.

/

𝑓 𝑥 𝑑𝑥 = lim
%→1

<
"23

%

𝑓(𝑥"
∗)(𝑥" − 𝑥"*3) 	 𝑎 = 𝑥# < 𝑥3 < ⋯ < 𝑥% = 𝑏
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Concept 2: Integrating approximating functions

Numerical integration (quadrature) formulas can be developed by fitting 
approximating functions (e.g., polynomials) to discrete data and 
integrating the approximating function: 

𝐼 = %
.

/

𝑓 𝑥 𝑑𝑥 ≅ %
.

/

𝑃% 𝑥 𝑑𝑥
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https://www.odu.edu/ts/software-services/matlab
https://www.odu.edu/ts/software-services/mathematica
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Integrating approximating functions (cont.)

CASE 1: The function to be integrated is known only at a finite set  of 
discrete points.

Parameters under control – the degree of approximating polynomial 

CASE 2: The function to be integrated is known. 

Parameters under control:

• The total number of discrete points

• The degree of the approximating polynomial to represent the discrete 
data. 

• The locations of the points at which the known function is discretized
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Example: integrating direct fit polynomials

Imagine you have some discrete data in some region, and you have 
successfully found a polynomial to interpolate the data.

In other words, you determine the values of the coefficient, such that

𝑃% 𝑥 = 𝑎# + 𝑎3𝑥 + 𝑎+𝑥+ + ⋯+ 𝑎5𝑥% = <
"2#

%

𝑎"𝑥 "

Then, the integral in this region is “straightforward”,

𝐼 = %
.

/

𝑓 𝑥 𝑑𝑓 ≈ %
.

/

𝑃% 𝑥 𝑑𝑥 = <
"2#

%

%
.

/

𝑎"𝑥 " 𝑑𝑥 = <
"2#

%

𝑎" F
𝑥 "63

𝑖 + 1	
.

/
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Integrating direct fit polynomials

• This procedure only relies having determined the coefficients on the 
interpolating function. In other words it does not depend on whether 
the original data was uniformly spaced or not.

• Because our interpolating routines assume the data can be described 
by  polynomials, one can imagine that this only useful for distributions 
whose underlying functions are non-singular.
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Part 3: 

Methods based on Riemann sum

                           equal subintervals
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Riemann integral

If 𝑓(𝑥) is a continuous function defined for 𝑎 ≤ 𝑥 ≤ 𝑏 and we divide the 
interval into 𝑛  subintervals of equal width Δ𝑥 = ⁄(𝑏 − 𝑎) 𝑛 , then the 
definite integral is

𝐼 = %
.

/

𝑓 𝑥 𝑑𝑥 = lim
%→1

<
"2#

%

𝑓(𝑥"
∗)Δ𝑥

Note, for a finite  𝑛, how well the Riemann sum approximates the integral 
depends on, among other things, how we write the discrete sums.

The Riemann integral can be interpreted as a net area under the curve 
𝑦 = 𝑓(𝑥) from 𝑎 to 𝑏.

                                                          Bernhard Riemann  [1826-1866]
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An area under the curve

Evaluating integrals exactly as an area under the curve is practically 
numerically impossible.

Solution: Replace this with the a “large number” of finite-sized and easy-
to-evaluate areas (e.g. rectangles), and have your code sum over these 
areas. Take the limit when these areas become increasingly small.

It can be done in a number of ways

18
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Primitive rule 1

The left endpoint Riemann sum

%
.

/

𝑓 𝑥 𝑑𝑥 ≈ <
"2#

%*3

𝑓 𝑥" Δ𝑥, 	 Δ𝑥 =
𝑏 − 𝑎
𝑛
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Primitive rule 2

The right endpoint Riemann sum

%
.

/

𝑓 𝑥 𝑑𝑥 ≈ <
"23

%

𝑓 𝑥" Δ𝑥, 	 Δ𝑥 =
𝑏 − 𝑎
𝑛
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Primitive rule 3

The midpoint Riemann sum

%
.

/

𝑓 𝑥 𝑑𝑥 ≈ <
"23

%

𝑓
𝑥"*3 + 𝑥_𝑖

2
Δ𝑥, 	 Δ𝑥 =

𝑏 − 𝑎
𝑛
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Primitive rule 4

The trapezoid rule

%
.

/

𝑓 𝑥 𝑑𝑥 ≈ <
"2#

%
𝑓 𝑥" + 𝑓(𝑥"*3)

2
Δ𝑥, 	 Δ𝑥 =

𝑏 − 𝑎
𝑛

%
.

/

𝑓 𝑥 𝑑𝑥 ≈
1
2
Δ𝑥 𝑓# + 2𝑓3 + 2𝑓+ + ⋯+ 2𝑓%*3 + 𝑓%
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Primitive rules for the Riemann sums

Which one should give a better approximation to the integral?
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// Integration by the trapezoidal rule of f(x) on [a,b]
// f - Function to integrate (supplied by a user)
//    a - Lower limit of integration
//    b - Upper limit of integration
//    r - Result of integration (out)
//    n - number of intervals
double int_trap(double(*f)(double), 
                double a, double b, int n)
{
    double r, dx, x;
    r = 0.0;
    dx = (b-a)/n;
    for (int i = 1; i <= n-1; i=i+1)
    {
        x = a + i*dx;
        r = r + f(x);
    }
    r = (r + (f(a)+f(b))/2.0)*dx;
    return r;
}

Example: C++ %
.

/
𝑓 𝑥 𝑑𝑥 ≈

1
2Δ𝑥 𝑓# +2𝑓3 +2𝑓+ +⋯+2𝑓%*3 +𝑓%

24
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Part 3b: 

Riemann sum and … interpolation

25

Let us talk about interpolation

It turns out that there is a connections between interpolations and the 
“Trapezoid rule”. 

This is perhaps evident by looking at the figure below. 

It appears that the function is approximated by its linear interpolator, 
which is indeed the case.

26

Let us talk about interpolation – linear interpolation

Consider the first-order interpolation for the 𝑖78  subinterval:

𝑓(𝑥) = 𝑓"*3 +
𝑓 𝑥" − 𝑓 𝑥"*3

Δ𝑥
(𝑥 − 𝑥"*3)

Then, the integral for the 𝑖78 	subinterval 

%
.

/

𝑓 𝑥 𝑑𝑥 = %
-(9:

-(
𝑓"*3 +

𝑓 𝑥" − 𝑓 𝑥"*3
Δ𝑥

(𝑥 − 𝑥"*3) 𝑑𝑥 =
𝑓 𝑥" + 𝑓(𝑥"*3)

2
Δ𝑥

which is exactly the Trapezoidal approximation!

And for uniform spacing (subintervals)

%
.

/

𝑓 𝑥 𝑑𝑥 ≈
1
2
Δ𝑥 𝑓# + 2𝑓3 + 2𝑓+ + ⋯+ 2𝑓%*3 + 𝑓%

27

Let us talk about interpolation – quadratic interpolation

Using the three-point interpolation, e.g., 3-point Lagrange interpolation for equal 
subintervals, one may write Simpson’s Rule for integration

%
.

/
𝑓 𝑥 𝑑𝑥 =

Δ𝑥
3 𝑓 𝑥# +4𝑓 𝑥3 +2𝑓 𝑥+ +4𝑓 𝑥; +⋯+2𝑓 𝑥%*+ +4𝑓 𝑥%*3 +𝑓(𝑥%)

Number of n intervals should be even. If 𝑛 is odd then the last interval should 
be treated by some other way (e.g. using the trapezoid rule).

                                                                                          

                                                                                           Thomas Simpson [1710-1761]

* Useful exercise: Derive the Simpson rule with a pair of 
slices with an equal interval by using second-order 
interpolation for 𝑓(𝑥) in the region [𝑥"*3 , 𝑥"63].	
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// integration by Simpson rule of f(x) on [a,b]
// f - Function to integrate (supplied by a user)
//    a - Lower limit of integration
//    b - Upper limit of integration
//    s - Result of integration (out)
//    n - number of intervals
double int_simp(double(*f)(double), 
                double a, double b, int n)
{
    double s, dx, x;
// if n is odd we add +1 interval to make it even
    if((n/2)*2 != n) {n=n+1;}
    s = 0.0;
    dx = (b-a)/n;
 for ( int i=2; i<=n-1; i=i+2)
    {
        x = a+static_cast<float>(i)*dx;
        s = s + 2.0*f(x) + 4.0*f(x+dx);
    }
    s = (s + f(a) + f(b )+ 4.0*f(a+dx))*dx/3.0;
    return s;
}

Example: C++ <
!

"
𝑓 𝑥 𝑑𝑥 = Δ𝑥3 𝑓 𝑥# +4𝑓 𝑥$ +2𝑓 𝑥% +4𝑓 𝑥& +⋯+2𝑓 𝑥'(% +4𝑓 𝑥'($ +𝑓(𝑥')

29

same thing, 
slightly different syntax

Example: Python

30
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Part 4: 

Newton-Cotes formulae

31

Newton polynomials

The direct fit polynomial procedure requires a significant amount of effort 
in the evaluation of the polynomial coefficients. When the function to be 
integrated is known at equally spaced points, the Newton difference 
polynomial can be fit to the discrete data with much less effort.

Newton polynomials on equally spaced intervals

𝑃% 𝑥 = 𝑓# + 𝑠Δ𝑓# +
𝑠(𝑠 − 1)

2!
Δ+𝑓# +

𝑠(𝑠 − 1)(𝑠 − 2)
3!

Δ;𝑓# + ⋯

+
𝑠 𝑠 − 1 𝑠 − 2 … 𝑠 − 𝑛 − 1

𝑛!
Δ%𝑓# + 𝐸𝑟𝑟𝑜𝑟

where 𝑠 = -*-I
J-

= -*-I
8

, 𝑥 = 𝑥# + 𝑠ℎ

𝐸𝑟𝑟𝑜𝑟 =
𝑠

𝑛 + 1
ℎ%63𝑓%63 𝜉 , 𝑥# ≤ 𝑥 ≤ 𝑥%

                                                    Isaac Newton, 1643 – 1727
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Newton polynomials

𝐼 = %
-I

/

𝑓 𝑥 𝑑𝑓 ≈ %
.

/

𝑃% 𝑥 𝑑𝑥

The integral requires that the approximating polynomial be an explicit 
function of 𝑥, whereas the polynomial from the slide before is implicit in 𝑥. 
However, the integral can be transformed into an explicit function of 𝑠. 

𝑠 =
𝑥 − 𝑥#
ℎ

, 𝑥 = 𝑥# + 𝑠ℎ, 	 𝑑𝑥 = ℎ𝑑𝑠

𝐼 = %
.

/

𝑓 𝑥 𝑑𝑓 ≈ %
.

/

𝑃% 𝑥 𝑑𝑥 = ℎ %
K .

K /

𝑃% 𝑠 𝑑𝑠

For polynomial order 𝑛 we integrate from 𝑎 = 𝑥#  to 𝑏 = 𝑥# + 𝑛ℎ, then

Δ𝐼 = ℎ %
#

%

𝑃%(𝑥# + 𝑠ℎ) 𝑑𝑠

33

Pictorial representation

Intervals are points separated by a distance ℎ.

Each choice of the degree 𝑛 of the interpolating polynomial yields a 
different Newton-Cotes formula (for 𝑛ℎ intervals).

34

Newton-Cotes: 1st degree polynomial

Let’s consider a first degree polynomial for a single interval. In other 
words, we have just two points:

Δ𝐼 ≈ ℎ %
#

3

𝑃% 𝑥# + 𝑠ℎ 𝑑𝑠 = ℎ %
#

3

𝑓# + 𝑠Δ𝑓# 𝑑𝑠 = Fℎ 𝑠𝑓# +
𝑠+

2
Δ𝑓#

#

3

where 𝑠 = 1, ℎ = Δ𝑥, and Δ𝑓# = (𝑓3 − 𝑓#), so we get

Δ𝐼 ≈
ℎ
2
(𝑓# + 𝑓3)

Applying this to all intervals gives

𝐼 ≈ <
"2#

%

Δ𝐼" = <
"2#

%
ℎ
2
𝑓" + 𝑓"63 =

ℎ
2
𝑓# + 2𝑓3 + 2𝑓+ + ⋯+ 2𝑓%*3 + 𝑓%

This is again the Trapezoidal approximation!
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Newton-Cotes: 1st degree polynomial – error estimate

The error estimation can be done by integrating the error term in the 
polynomial.

For a single interval the local error is

𝐸𝑟𝑟𝑜𝑟 = ℎ %
#

3 𝑠(𝑠 − 1)
2

ℎ+𝑓 LL 𝜁 𝑑𝑠 = −
1
12

ℎ;𝑓 LL 𝜁 = 𝑂(ℎ;)

The total error for equally spaced data is given by

<
"2#

%*3

−
1
12

ℎ;𝑓 LL 𝜁 = 𝑛 −
1
12

ℎ;𝑓 LL 𝜁

since ⁄𝑛 = (𝑥% − 𝑥#) ℎ, the Total/Global Error is

−
1
12

𝑥% − 𝑥# ℎ+𝑓 LL 𝜁 = 𝑂(ℎ+)

36
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Newton-Cotes: 1st degree polynomial – error estimate

Having the global error estimate 

−
1
12

𝑥% − 𝑥# ℎ+𝑓 LL 𝜁 = 𝑂(ℎ+)

we can predict how small ℎ must be to achieve a specified tolerance 
using the trapezoid rule

Example: Let’s specify the tolerance as 0.5×10*M  for the integral

%
#

3

𝑒*-
N
𝑑𝑥

𝑓 𝑥 = 𝑒*-
N
, 𝑓 L 𝑥 = −2𝑥𝑒*-

N
,  𝑓 LL 𝑥 = (4𝑥+ − 2)𝑒*-

N

Thus, 𝑓 LL 𝑥 ≤ 2	on the interval [0,1], and the error in absolute will be no 
greater than ℎ+/6. Then

1
12

ℎ+ - 2 ≤
1
2
10*M , 	 ℎ ≤ 0.01732

37

Newton-Cotes: 2nd degree polynomial

Simpson’s 1/3 rule = a second degree polynomial for  two increments 
(three equally spaced points). The upper limit of integration for a single 
interval is the 𝑠 = 2

Δ𝐼 ≈ ℎ %
#

+

𝑓# + 𝑠Δ𝑓# +
𝑠 𝑠 − 1

2!
Δ+𝑓# 𝑑𝑠 =

ℎ
3
𝑓# + 4𝑓3 + 𝑓+

where we have used: Δ𝑓# = 𝑓3 − 𝑓# , 	 Δ+𝑓# = 𝑓+ − 2𝑓3 + 𝑓#

Applying this to all intervals we get

𝐼 =
ℎ
3
𝑓# + 4𝑓3 + 2𝑓+ + ⋯+ 2𝑓%*+ + 4𝑓%*3 + 𝑓%

This is again Simpson’s rule!

The factor of 1/3 defines the name for “Simpson’s 1/3 rule”.

The total number of intervals must be even.

38

Newton-Cotes: 2nd degree polynomial – error estimate

The error estimation can be done by integrating the error term in the 
polynomial.

For a single interval the local error is

𝐸𝑟𝑟𝑜𝑟 = ℎ %
#

+ 𝑠(𝑠 − 1)(𝑠 − 2)
6

ℎ;𝑓 LLL 𝜁 𝑑𝑠 = 0

The cubic term is identically zero!  And the error is in the next degree 
polynomial 

𝐸𝑟𝑟𝑜𝑟 = ℎ %
#

+ 𝑠(𝑠 − 1)(𝑠 − 2)(𝑠 − 3)
24

ℎM𝑓 LLLL 𝜁 𝑑𝑠 = −
1
90

ℎO𝑓 LLLL 𝜁

The error estimation gives the global error	𝑂(ℎM)

Remember that for the trapezoid rule the global error is 𝑂(ℎ+) 

39

Newton-Cotes: 3rd  degree polynomial

Simpson’s 3/8 rule = a third degree polynomial for four equally spaced 
points. The upper limit of integration for a single interval is 𝑠 = 3

Δ𝐼 ≈ ℎ %
#

;

𝑓# + 𝑠Δ𝑓# +
𝑠 𝑠 − 1

2!
Δ+𝑓# +

𝑠(𝑠 − 1)(𝑠 − 2)
3!

Δ;𝑓# 𝑑𝑠

Using Δ;𝑓# = 𝑓; − 3𝑓+ + 3𝑓3 − 𝑓#  we get Δ𝐼 = ;

P
ℎ(𝑓# + 3𝑓3 + 3𝑓+ + 𝑓;)

𝐼 =
3ℎ
8

𝑓# + 3𝑓3 + 3𝑓+ + 2𝑓; + 3𝑓M + ⋯+ 3𝑓%*3 + 𝑓%

The factor of 3/8 defines the name for “Simpson’s 3/8 rule”.

The total number of intervals must  be 
a multiple of three

The error estimation gives (again!) 
Global error	𝑂(ℎM) as in the Simpson’s 1/3 rule. 

40

Simpson’s 1/3 rule vs. Simpson’s 3/8 rule

Both rules have the same order for local error

𝐸𝑟𝑟𝑜𝑟3
;
= −

1
90

ℎO𝑓 LLLL 𝜁

𝐸𝑟𝑟𝑜𝑟;
P
= −

3
80

ℎO𝑓 LLLL 𝜁

The coefficient in the local error for 1/3 rule is even less than in the local 
error in 3/8 rule. Hence, Simpson’s 1/3 rule should be more accurate.

Is there any value to use Simpson’s 3/8 rule?

The 3/8 rule is useful when the total number of intervals is odd. Three 
intervals can be evaluated by the 3/8 rule and the remaining even 
number of intervals can be evaluated by the 1/3 rule.

But, normally, it is not worth doing it. 

41

Higher-order Newton-Cotes formulae

Numerical integration formulas based on equally spaced increments are 
called Newton- Cotes formulas. The first 10 Newton-Cotes formulas are 
presented in Abramowitz and Stegun (1964)*. Newton-Cotes formulas 
can be expressed in the general form: 

𝐼 = %
.

/

𝑓 𝑥 𝑑𝑥 = 𝑛𝛽ℎ 𝛼#𝑓# + 𝛼3𝑓3 + ⋯ + 𝐸𝑟𝑟𝑜𝑟

where 𝑛 denotes both the number of increments and the degree of the 
polynomial, 𝛽 and 𝛼"  are coefficients

* Abramowitz and Stegun “Handbook of Mathematical Functions: 
with Formulas, Graphs, and Mathematical Tables” (multiple editions)
see section 25 “Numerical analysis”

42
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Composite Newton-Cotes quadratures (summary)

ℎ = ⁄(𝑏 − 𝑎) 𝑛

The trapezoid rule (1 panel rule)

𝐼 =
ℎ
2
𝑓# + 2𝑓3 + 2𝑓+ + ⋯+ 2𝑓%*3 + 𝑓%

The Simpson 1/3 rule (2 panel rule)

𝐼 =
ℎ
3
𝑓# + 4𝑓3 + 2𝑓+ + 4𝑓; …+ 2𝑓%*+ + 4𝑓%*3 + 𝑓%

The Bool’s rule (4 panel rule)

𝐼 =
2ℎ
45

7𝑓# + 32𝑓3 + 12𝑓+ + 32𝑓; + 7𝑓M …+ 12𝑓%*+ + 32𝑓%*3 + 𝑓%

43

Other view on numerical integration

Quadrature is weighted sum of finite number of sample values of integrand 
function

%
.

/

𝑓 𝑥 𝑑𝑥 ≈ <
"23

%

𝑤"𝑓 𝑥"

Then 

Rule          degree weights         global error

Trapezoid rule  n=1 𝑤" =
8

+
, 8
+

   𝑂 ℎ+

Simpson’s  1/3 rule n=2 𝑤" =
8

;
, M8
;
, 8
;

   𝑂 ℎM

Simpson’s  3/8 rule n=3 𝑤" =
;8

P
, Q8
P
, Q8
P
, ;8
P

  𝑂(ℎM)

Bool’s rule  n=4 𝑤" =
3M8

MO
, RM8
MO
, +M8
MO
, RM8
MO
, 3M8
MO

 𝑂(ℎR)

44

Integrating error

Generally as 𝑁  increases, the precision of a method increases

However, as 𝑁  increases, the round-off error increases

Some evaluations (not exact but gives an idea)*:

Number of steps for highest accuracy:

trapezoid rule  steps  error

single precision  631  3*10-6 

double precision  106  10-12

Simpson’s rule  steps  error

single precision  36  6*10-7

double precision  2154  5*10-14

* see details in R.H. Landau & M.J.Paez, An Introduction to Computational Physics

45

Integrating error (cont.)

The best numerical evaluation of an integral can be obtained with a 
relatively small number is sub-intervals (𝑁~1000	or much less) 
(not with 𝑁 → ∞) 

It is possible to get an error close to machine precision with Simpson’s 
rule and with other higher-order methods (Newton-Cotes quadratures)

46

Example

Let us consider a couple of examples. First, let’s evaluate the following 
integral using by both the Trapezoid and Simpson’s 1/3 rules.

%
#

,

sin 𝑥 𝑑𝑥

Intervals  Trapez.  Simpson
 2  1.570796  2.094395
 4  1.896119  2.004560
 8  1.974232  2.000269
 16  1.993570  2.000017
 32  1.998393  2.000001
 64  1.999598  2.000000
 128  1.999900  2.000000
 256  1.999975  2.000000
 512  1.999994  2.000000
 1024  1.999998  2.000000
 2048  2.000000  2.000000
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Example 

%
#

, 𝑥 cos(10𝑥+)
𝑥+ + 1

𝑑𝑥

Intervals  Trapez.  Simpson
         2  0.578769  0.811200
         4  0.813285  0.891458
         8  0.688670  0.647131
        16  0.285919  0.151669
        32  0.049486 -0.029325
        64  0.004360 -0.010682
       128  0.001183  0.000124
       256  0.000526  0.000306
       512  0.000368  0.000315
      1024  0.000329  0.000316
      2048  0.000319  0.000316
      4096  0.000316  0.000316
      8192  0.000316  0.000316
     16384  0.000316  0.000316
     32768  0.000316  0.000316 
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9

Extrapolation and Romberg integration

Key idea – use the error estimation by evaluating the integral using two 
different interval sizes, one with ℎ and a second with a finer value of ⁄ℎ 𝑅 
where  𝑅 > 1. We label these as 𝐼(ℎ)  and  𝐼( ⁄ℎ 𝑅).

As one can expect, the difference between these can give us an estimate 
of the correction that needs to be added to 𝐼( ⁄ℎ 𝑅) so as to more 
accurately estimate the integral.
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Extrapolation and Romberg integration

The error estimate can be used both for error control and extrapolation. 

Consider a numerical algorithm which approximates an exact calculation 
with an error that depends on an increment, ℎ 

𝑓$-.S7 = 𝑓 ℎ + 𝐴ℎ% + 𝐵ℎ%6T + 𝐶ℎ%6+T + ⋯	

where 𝑛 is the order of the leading error term and 𝑚 is the increment in 
the order of the following error terms. Applying the algorithm at two 
increment sizes, ℎ3 = ℎ	and, gives ℎ+ = 	ℎ/𝑅 gives

𝑓$-.S7 = 𝑓 ℎ + 𝐴ℎ% + 𝑂 ℎ%6T

𝑓$-.S7 = 𝑓( ⁄ℎ 𝑅) + 𝐴( ⁄ℎ 𝑅)% + 𝑂 ℎ%6T

then, the difference

0 = 𝑓 ℎ − 𝑓( ⁄ℎ 𝑅) + 𝐴ℎ% − 𝐴( ⁄ℎ 𝑅)% + 𝑂 ℎ%6T
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Extrapolation and Romberg integration (cont.)

0 = 𝑓 ℎ − 𝑓( ⁄ℎ 𝑅) + 𝐴ℎ% − 𝐴( ⁄ℎ 𝑅)% + 𝑂 ℎ%6T

0 = 𝑓 ℎ − 𝑓( ⁄ℎ 𝑅) + 𝐴ℎ% 1 − ⁄1 𝑅% + 𝑂 ℎ%6T

Solving for the error term 𝐴ℎ%  gives

𝐸𝑟𝑟𝑜𝑟 ℎ = 𝐴ℎ% =
𝑅%

𝑅% − 1
(𝑓 ⁄ℎ 𝑅) − 𝑓 ℎ + 𝑂 ℎ%6T

𝐸𝑟𝑟𝑜𝑟 ⁄ℎ 𝑅 = 𝐴( ⁄ℎ 𝑅)% =
1

𝑅% − 1
(𝑓 ⁄ℎ 𝑅) − 𝑓 ℎ + 𝑂 ℎ%6T

The error estimates can be added to the approximate results to yield an 
improved approximation. 

𝑓$-.S7 = 𝑓( ⁄ℎ 𝑅) + 𝐴( ⁄ℎ 𝑅)% + 𝑂 ℎ%6T

This process is called extrapolation 

𝐸𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 = 𝑓( ⁄ℎ 𝑅) +
1

𝑅% − 1
(𝑓 ⁄ℎ 𝑅) − 𝑓 ℎ + 𝑂 ℎ%6T
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Extrapolation and Romberg integration (cont.)

When extrapolation is applied to numerical integration by the trapezoid rule, 
the result is called Romberg integration. 

It can be shown that the error of the composite trapezoid rule has the 
functional form (the leading term is with 𝑛 = 2)

𝐸𝑟𝑟𝑜𝑟 = 𝐶3ℎ+ + 𝐶+ℎM + 𝐶;ℎ; + ⋯

Let's apply the trapezoid rule for ℎ/2	(𝑅 = 2)

𝐸𝑟𝑟𝑜𝑟 ⁄ℎ 2 =
1

2+ − 1
𝐼 ⁄ℎ 2 − 𝐼(ℎ)

Applying the extrapolation formula gives

𝐸𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 = 𝐼 ⁄ℎ 2 + 𝐸𝑟𝑟𝑜𝑟 ⁄ℎ 2 + 𝑂 ℎM =

𝐸𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 = 𝐼 ⁄ℎ 2 +
1

2+ − 1
𝐼 ⁄ℎ 2 − 𝐼(ℎ) + 𝑂(ℎM)

Thus we increased the accuracy of the trapezoid rule. 
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Summary

1. Numerical integration is mostly based on interpolation (not on 
Riemann sum definition).

2. The Newton-Cotes formulas, which are based on Newton forward-
difference polynomials, give simple integration formulas for equally 
spaced data. 

3. Besides, Newton-Cotes formulae provide error estimates.
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