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Interpolation
A. Godunov

1. Basics of interpolation
2. Direct-fit polynomial interpolation
3. Lagrange interpolation
4. Divided difference polynomial interpolation
5. Cubic spline interpolation
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Part 1: 

Basics of  interpolation
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Data types

Data types:

• Continuous data: analytic functions (e.g. 𝑓 𝑥 = sin 𝑥)

• In many problems in engineering and science, the data being 
considered are known only at a set of discrete points, not as a 
continuous function, 𝑓! = 𝑓 𝑥! 	(𝑖 = 1,2, … ).
Discrete data: data tables (e.g. observations, results of calculations)

Attention:

Computers have limited memory for working with numbers. 
Thus, computers operate with discrete sets of data.
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Discrete data

A problem arises when the value of the function is needed at any value 
of 𝑥	between the discrete values in the table. 

The actual function is not known and cannot be determined from the 
tabular values. However, the actual function can be approximated by 
some known function, and the value of the approximating function can 
be determined at any desired value of 𝑥. 

This process, which is called 

                                               interpolation 
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Applications

In many applications, the values of the discrete data at the specific 
points are not all that is needed. 

• Values of the function at points other than the known discrete points 
may be needed (i.e., interpolation). 

• The derivative of the function may be required (i.e., differentiation).

• The integral of the function may be of interest (i.e., integration). 

    (a) Interpolation           (b) Differentiation         (c) Integration 5
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Key idea for interpolation

Find such approximating function 𝑔(𝑥) that

• The interpolating function passes exactly through all of the discrete 
points, i.e. 𝑔 𝑥! = 𝑓 𝑥!  at each data point.

• 𝑔 𝑥 	is a good* approximation for any other 𝑥 between original data 
points

Then interpolation lets you find an approximate value for the function 
𝑓(𝑥)	at any point 𝑥 within the interval 𝑥" , 𝑥# , … 𝑥$ .

Notes
* How do we know if 𝑔(𝑥) is a good one?

** there is a differences between: 
interpolation, extrapolation and data fitting. 
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Attention!

Data points can be interpolated by an infinite number of functions since 
the actual function is NOT known and CANNOT be determined from the 
tabular data.

In fact, any analytical function can be used as an approximating function. 

Interpolation ≡ Approximation

There is no exact and unique solution!
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Equally or unequally spaced data points

A set of discrete data may be equally spaced or unequally spaced in the 
independent variable 𝑥. 

• Unequally spaced data - several procedures can be used: 
(a) direct fit polynomials, (b) Lagrange polynomials, and (c) divided 
difference polynomials. 
Methods such as these require a considerable amount of effort. 

• Equally spaced data - procedures based on differences can be used, 
for example, Newton divided difference methods.
These methods are quite easy to apply.
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Interpolation is a two step procedure

1. Selects an approximating function 𝑔(𝑥) 

2. Find proper coefficients*. 

*Attention! Normally we don’t use all available N points to produce a 
single set of coefficients  for the whole interval (“global” interpolation), 
instead you choose a group of points (n<N) to interpolate n-1 intervals 
“locally”, i.e. each group has it’s own set of coefficient for 𝑔(𝑥)
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Step 1: Selecting 𝑔(𝑥)

How to choose 𝑔(𝑥)?

• 𝑔(𝑥)	may have some standard form (e.g. a polynomial function)
Most interpolation methods are grounded on ‘smoothness’ of 
interpolated functions. (However, it does not work well all the time)

• or be specific for the problem (then we need some ideas about data)

Approximating functions should have the following properties:

1. The approximating function should be easy to determine.

2. It should be easy to evaluate.

3. It should be easy to differentiate.

4. It should be easy to integrate.
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Linear combination

Linear combination of functions (often elementary functions) is the most 
common form of 𝑔(𝑥)

𝑔 𝑥 = 𝑎"ℎ" 𝑥 + 𝑎#ℎ# 𝑥 + ⋯+ 𝑎%ℎ% 𝑥

where ℎ!(𝑥) are known functions.
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Part 2: 

Direct-fit polynomial interpolation

12



3

2.1 Direct-fit polynomial interpolation

The general form of 𝑛-th degree polynomial is

𝑃$ 𝑥 = 𝑎& + 𝑎"𝑥 + 𝑎#𝑥# + ⋯+ 𝑎%𝑥$

where 𝑎! 	are constant coefficients

The property of polynomials that makes them suitable as approximating 
functions is stated by the Weierstrass approximation theorem: 

If 𝑓(𝑥)	is a continuous function in the closed interval 𝑎 ≤ 𝑥 ≤ 𝑏, then for 
every 𝜀 > 0 there exists a polynomial 𝑃$(𝑥), where the the value of 𝑛 
depends on the value of 𝜀, such that for all 𝑥

𝑃$ 𝑥 − 𝑓(𝑥) < 𝜀

13
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Uniqueness theorem

Polynomials satisfy a uniqueness theorem: polynomial of degree 𝑛 
passing exactly through 𝑛 + 	1	discrete points is unique.

The polynomial through a specific set of points may take many different 
forms, but all forms are equivalent. 

Any form can be manipulated into any other form by simple algebraic 
rearrangement. 
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Differentiation and integration of polynomials

Differentiation and integration of polynomials is straightforward.

𝑑
𝑑𝑥

𝑎%𝑥% = 𝑘𝑎%𝑥%'"

@ 𝑎%𝑥%𝑑𝑥 =
𝑎%

𝑘 + 1
𝑥%(" + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
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Orders of polynomial interpolation

nth order interpolation

𝑃$ 𝑥 = 𝑎& + 𝑎"𝑥 + 𝑎#𝑥# + ⋯+ 𝑎%𝑥$

First-order (linear interpolation): two coefficients are needed

𝑃" 𝑥 = 𝑎& + 𝑎"𝑥

Second-order (quadratic interpolation)

𝑃# 𝑥 = 𝑎& + 𝑎"𝑥 + 𝑎#𝑥#

Third-order (cubic interpolation)

𝑃) 𝑥 = 𝑎& + 𝑎"𝑥 + 𝑎#𝑥# + 𝑎)𝑥)

...
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Linear interpolation

Two coefficients

𝑔 𝑥 = 𝑃" 𝑥 = 𝑎& + 𝑎"𝑥.

The idea of linear interpolation is to approximate data at point 𝑥 by a 
straight line passing through two data points 𝑥*  and 𝑥*("  closest to 𝑥. The 
coefficients 𝑎&  and 𝑎"  can be found from the system of equations

𝑔 𝑥* = 𝑓* = 𝑎& + 𝑎"𝑥*

𝑔 𝑥*(" = 𝑓*(" = 𝑎& + 𝑎"𝑥*("

Solving for 𝑎&  and 𝑎"  gives the function 𝑔(𝑥) on 𝑥* , 𝑥*("  as

𝑔 𝑥 = 𝑓* +
𝑥 − 𝑥*
𝑥*(" − 𝑥*

𝑓*(" − 𝑓*

𝑔 𝑥 = 𝑓*
𝑥 − 𝑥*("
𝑥* − 𝑥*("

+ 𝑓*("
𝑥 − 𝑥*
𝑥*(" − 𝑥*

	 or	as	symmetric	form
17
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Example: C++

double int1(double x, double xi[], double yi[], int imax)
{
    double y;
    int j;
// if x is ouside the xi[] interval 
    if (x <= xi[0])      return y = yi[0];
    if (x >= xi[imax-1]) return y = yi[imax-1];    
// loop to find j so that x[j-1] < x < x[j]
    j = 0;
    while (j <= imax-1)
    {
     if (xi[j] >= x) break;
     j = j + 1;
     }
 y = yi[j-1]+(yi[j]-yi[j-1])*(x-xi[j-1])/(xi[j]-xi[j-1]);
    return y;
}

Note that a bisectional approach is more efficient to search an array.
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Example: 

19

0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

 f(x)=sin(x2)
 Data points
 linear interpolation

 

 
si

n(
x2 )

x

19

Linear interpolation: summary

The linear interpolation may work well for very smooth functions when the 
second and higher derivatives are small.

It is worthwhile to note that for each data interval one has a different set 
of coefficients 𝑎&  and 𝑎" . This is the principal difference from data fitting 
where the same function, with the same coefficients, is used to fit the 
data points on the whole interval [𝑥" , 𝑥$ ]. 

We may improve quality of linear interpolation by increasing number of 
data points 𝑥!  on the interval. 

HOWEVER!!! It is much better to use higher-order interpolations. 

example from F. S. Acton “Numerical methods that work” 
“A table of sin(x) covering the first quadrant, for example, requires 541 
pages if it is to be linearly interpolable to eight decimal places. If 
quadratic interpolation is used, the same table takes only one page.”
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Quadratic interpolation as direct fit

We need three points for the second order interpolation. 
What points?

The system of equations

𝑓* = 𝑎& + 𝑎"𝑥* + 𝑎#𝑥*
#

𝑓*(" = 𝑎& + 𝑎"𝑥*(" + 𝑎#𝑥*("
#

𝑓*(# = 𝑎& + 𝑎"𝑥*(# + 𝑎#𝑥*(#
#

This system can be solved analytically
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Direct fit polynomial interpolation

The direct fit polynomial method, while quite straightforward in principle, 
has several disadvantages. 

• It requires a considerable amount of effort to solve the system of 
equations for the coefficients. 

• For a high-degree polynomial (n greater than about 4), the system of 
equations can be ill-conditioned, which causes large errors in the 
values of the coefficients.
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Part 3: 

Lagrange polynomial interpolation

23

Lagrange Polynomials

There is a simpler procedure comparing to the direct fit polynomials

Using Lagrange polynomial, which can be fit to unequally spaced data 
or equally spaced data.

𝑔 𝑥 = 𝑓(𝑥")𝜆" 𝑥 + 𝑓 𝑥# 𝜆# 𝑥 + ⋯+ 𝑓$𝜆$ 𝑥

𝜆$ 𝑥 = R
* +! ,"

$
𝑥 − 𝑥*
𝑥! − 𝑥*

No system of equations must be solved to evaluate the polynomial. 

24
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Example: C++

double polint(double x, double xi[], double yi[], 
              int isize, int npoints)
{
    double lambda[isize];
    double y;
    int j, is, il;
// check order of interpolation
    if (npoints > isize) npoints = isize;    
// if x is ouside the xi[] interval 
    if (x <= xi[0])       return y = yi[0];
    if (x >= xi[isize-1]) return y = yi[isize-1];    
// loop to find j so that x[j-1] < x < x[j]
    j = 0;
    while (j <= isize-1)
    {
     if (xi[j] >= x) break;
     j = j + 1;
     }

25
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Example: C++

// shift j to correspond to (npoint-1)th interpolation
     j = j - npoints/2;
// if j is ouside of the range [0, ... isize-1]
     if (j < 0) j=0;
     if (j+npoints-1 > isize-1 ) j=isize-npoints;
     y = 0.0;
     for (is = j; is <= j+npoints-1; is = is+1)
     {
         lambda[is] = 1.0;
         for (il = j; il <= j+ npoints-1; il = il + 1)
         {
          if(il != is) lambda[is] = lambda[is]*
                       (x-xi[il])/(xi[is]-xi[il]);
         }
         y = y + yi[is]*lambda[is];
     }
    return y;
}
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Example: 
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Summary

• Moving from the first -order to the third and 5th order improves 
interpolated values to the original function.

• However, the 7th order interpolation instead being closer to the 
function 𝑓(𝑥) produces wild oscillations known as Runge 
phenomenon – extreme “polynomial wiggle” associated with high-
degree polynomial interpolation at evenly-spaced points.

• Rule of thumb: do not use high order interpolation. Fifth order may 
be considered as a practical limit. 

• If you believe that the accuracy of the 5th order interpolation is not 
sufficient for you, then you should rather consider some other 
method of interpolation.
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Advantages and disadvantages

The main advantage of the Lagrange polynomial is that the data may 
be unequally spaced. 

There are several disadvantages. 

1. All of the work must be redone for each degree polynomial. 

2. All the work must be redone for each value of 𝑥. 

The first disadvantage is eliminated by Neville's algorithm (which has 
some computational advantages over the Lagrange polynomials)

Both disadvantages are eliminated by using divided differences. 

29
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Part 4: 

Divided difference polynomials

30
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Divided difference coefficients

A divided difference is defined as the ratio of the difference in the 
function values at two points divided by the difference in the values of 
the corresponding independent variable. 

Thus, the first divided difference at point 𝑖 is defined as

𝑓 𝑥! , 𝑥!(" = 𝑓!
" =

𝑓!(" − 𝑓!
𝑥!(" − 𝑥!

The second divided difference is defined as

𝑓 𝑥! , 𝑥!(" , 𝑥!(# = 𝑓!
# =

𝑓 𝑥!(" , 𝑥!(# − 𝑓 𝑥! , 𝑥!("
𝑥!(# − 𝑥!

Similar expressions can be obtained for divided differences of any 
order.

Approximating polynomials for nonequally spaced data can be 
constructed using divided differences. 31

31

Tables of divided differences

Example:

32
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Example: Fortran

double precision d(n,n), x(n), f(n)
integer i,j
..................
d = 0.0
! initialization of d(n,1)
do i=1,n
  d(i,1) = f(i)
end do
! calculations
do j=2,n
  do i=1,n-j+1
    d(i,j)=(d(i+1,j-1)-d(i,j-1))/(x(i+1+j-2)-x(i))
  end do
end do
! print results
do i=1,n
  write(*,200) (d(i,j),j=1,n-i+1)
end do
200 format (5f10.6)
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Example: results for 8 points

x:    3.20,3.30,3.35,3.40,3.50,3.60,3.65,3.70
f:    0.312500,0.303030,0.298507,0.294118,
      0.285714,0.277778,0.273973,0.270270
f         f1.       f2.       f3.       f4
0.312500 -0.094700  0.028265 -0.007311 -0.006774 ...
0.303030 -0.090460  0.026802 -0.009343  0.010684 ...
0.298507 -0.087780  0.024934 -0.006138 -0.001741 ...
0.294118 -0.084040  0.023399 -0.006660 -0.000053
0.285714 -0.079360  0.021734 -0.006676
0.277778 -0.076100  0.020399
0.273973 -0.074060
0.270270

34
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Divided difference polynomials

Let's define a power series for 𝑃$(𝑥)	such that the coefficients are 

identical to the divided differences 𝑓!
$ .

𝑃$ 𝑥 = 𝑓!
& + 𝑥 − 𝑥& 𝑓!

" + 𝑥 − 𝑥& 𝑥 − 𝑥" 𝑓!
# + ⋯

+ 𝑥 − 𝑥& 𝑥 − 𝑥" … 𝑥 − 𝑥$'" 𝑓!
$ .

𝑃$(𝑥)	is clearly a polynomial of degree 𝑛. 

We can easily demonstrate that that 𝑃$(𝑥)	passes exactly through the 
data points 𝑥& , 𝑥" , …

Since 𝑃$(𝑥)	is a polynomial of degree n and passes exactly through the 
𝑛 + 1 data points, it is obviously one form of the unique polynomial 
passing through the data points.

35
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Three forms of polynomials (to compare)

1. Direct-fit polynomials

𝑃$ 𝑥 = 𝑎& + 𝑎"𝑥 + 𝑎#𝑥# + ⋯+ 𝑎%𝑥$

2. Lagrange polynomials

𝑔 𝑥 = 𝑓"𝜆" 𝑥 + 𝑓#𝜆# 𝑥 + ⋯+ 𝑓$𝜆$ 𝑥

𝜆$ 𝑥 = R
* +! ,"

$
𝑥 − 𝑥*
𝑥! − 𝑥*

3. Divided difference polynomials

𝑃$ 𝑥 = 𝑓!
& + 𝑥 − 𝑥& 𝑓!

" + 𝑥 − 𝑥& 𝑥 − 𝑥" 𝑓!
# + ⋯

+ 𝑥 − 𝑥& 𝑥 − 𝑥" … 𝑥 − 𝑥$'" 𝑓!
$ .

36
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Divided differences – equally spaced points

Fitting approximating polynomials to tabular data is considerably 
simpler when the values of the independent variable are equally 
spaced. 

Implementation of polynomial fitting for equally spaced data is best 
accomplished in terms of differences. 

37
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Three interpretations

The numbers appearing in a difference table are unique. 

However, three different interpretations can be assigned to these 
numbers, each with its unique notation. 

1. The forward difference relative to point 𝑖 is 
Δ𝑓! = (𝑓!(" − 𝑓!)

2. the backward difference relative to point 𝑖 + 1 is 
∇𝑓!(" = 𝑓! − 𝑓!(" = −(𝑓!(" − 𝑓!)

3. The centered difference relative to point i + 1/2 is 

𝛿𝑓
!("#

= (𝑓!(" − 𝑓!)

38
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Example 𝑓 𝑥 = "

-
    for 3.1 < 𝑥 < 3.9

observations: the first and second differences are quite smooth. The third differences, while 
monotonic, are not very smooth. The fourth differences are not monotonic, and the fifth 
differences are extremely ragged. The magnitudes of the higher-order differences decrease 
rapidly. If the differences are not smooth and not decreasing, several possible explanations 
exist: 1. The original data set has errors.  2. The increment Δ𝑥 may be too large. 3. There may 
be a singularity in f(x) or its derivatives in the range of the table.

Difference tables are useful for evaluating the quality of a set of tabular data.

39

The Newton Forward-Difference Polynomial

Given 𝑛 + 1 data points, then one form of the unique nth-degree 
polynomial that passes through the n+1 points (separated by Δ𝑥 = ℎ) 
is given by

𝑃$ 𝑥 = 𝑓& + 𝑠Δ𝑓& +
𝑠(𝑠 − 1)

2!
Δ#𝑓& +

𝑠(𝑠 − 1)(𝑠 − 2)
3!

Δ)𝑓& +

+⋯+
𝑠 𝑠 − 1 𝑠 − 2 … 𝑠 − 𝑛 − 1

𝑛!
Δ$𝑓&

where 

𝑠 =
𝑥 − 𝑥&
Δ𝑥

=
𝑥 − 𝑥&
ℎ

, 	 𝑥 = 𝑥& + 𝑠ℎ

Equation does not look anything like the direct fit polynomial, the Lagrange 
polynomial, or the divided difference polynomial. However, if it is a polynomial 
of degree n and passes exactly through the n + l data points, it must be one 
form of the unique polynomial that passes through this set of data. 40

40

41

Comparing Lagrange and divided differences

Quality of Lagrange interpolation: 
average difference from f(x)
   1st         3rd         5th         7th
0.1410      0.0848      0.1434      0.2808

Quality of interpolation: average difference from f(x)
Orders of divided difference interpolation
     1           2           3           4          5
0.1410      0.1484      0.0848      0.1091     0.1433
     6           7           8           9
0.2022      0.2808      0.3753      0.4526

41

The Newton Backward-Difference Polynomial

The Newton forward-difference polynomial, can be applied at the top or 
in the middle of a set of tabular data, where the downward-sloping 
forward differences exist. However, at the bottom of a set of tabular 
data, the required forward differences do not exist, and we need to 
used the Newton backward-difference polynomial.

𝑃$ 𝑥 = 𝑓& + 𝑠∇𝑓& +
𝑠(𝑠 − 1)

2!
∇#𝑓& +

𝑠(𝑠 − 1)(𝑠 − 2)
3!

∇)𝑓& +

+⋯+
𝑠 𝑠 − 1 𝑠 − 2 … 𝑠 − 𝑛 − 1

𝑛!
∇$𝑓&

where 

𝑠 =
𝑥 − 𝑥&
Δ𝑥

=
𝑥 − 𝑥&
ℎ

, 	 𝑥 = 𝑥& + 𝑠ℎ

42
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Summary

A major advantage of the Newton forward and backward difference 
polynomials is that each higher order polynomial is obtained from the 
previous lower-degree polynomials simply by adding the new term

However, both polynomial, Lagrange and divided difference 
polynomials share the same problem called Runge phenomenon – 
extreme “polynomial wiggle” associated with high-degree polynomial 
interpolation at evenly-spaced points.

Other difference polynomials:

• Stirling centered-difference polynomials

• Bessel centered-difference polynomials
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Part 5: 

Cubic spline interpolation

44

Problems with polynomial approximation

1. Problems can arise when a single high-degree polynomial is fit to a 
large number of points. 
High-degree polynomials would obviously pass through all the data 
points themselves, but they can oscillate wildly between data points 
due to round-off errors and overshoot. 

2. In such cases, lower-degree polynomials can be fit to subsets of 
the data points. 
If the lower-degree polynomials are independent of each other, a 
piecewise approximation is obtained. 

3. One of the principal drawbacks of the polynomial 
interpolation is related to discontinuity of derivatives 
at connecting data points 𝑥* .

45
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Spline

An alternate approach is to fit a lower-degree polynomial to connect 
each pair of data points, i.e., 𝑃$(𝑥) for every interval
and to require the set of lower-degree polynomials to be consistent with 
each other in some sense. 

This type of polynomial is called a spline function, or simply a spline.

The procedure for deriving coefficients of spline interpolations uses 
information from all data points, i.e. nonlocal information to guarantee 
global smoothness in the interpolated function up to some order of 
derivatives.

46
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Degrees of splines

Linear splines are not really splines since points are connected by  
straight line segments (aka linear interpolation). 

Quadratic splines - second-order approximating polynomials for every 
interval 𝑓! 𝑥 = 𝑎! + 𝑏!𝑥 + 𝑐𝑥!

# 	 𝑖 = 1,2, … , 𝑛 . The slopes of the 
quadratic splines can be forced to be continuous at each data point, but 
the curvatures (i.e., the second derivatives) are still discontinuous. 

A cubic spline yields a third-degree polynomial connecting each pair of 
data points. 

𝑓! 𝑥 = 𝑎! + 𝑏!𝑥 + 𝑐𝑥!# + 𝑑!𝑥!
) 	 𝑖 = 1,2, … , 𝑛

The slopes and curvatures of the cubic splines can be forced to be 
continuous at each data point.
Looks very promising, no need to go to higher degrees of splines!
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History …

The name spline comes from the thin flexible rod, called a spline, used 
by draftsmen to draw smooth curves through a series of discrete points. 

The spline is placed over the points and either weighted or pinned at 
each point. Due to the flexure properties of a flexible rod (typically of 
rectangular cross section), the slope and curvature of the rod are 
continuous at each point. 

A smooth curve is then traced along the rod, yielding a spline curve.

48
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Definitions

𝑛 + 1	total points, 𝑥! 	(𝑖 = 1,2, … 	 , 𝑛	 + 1), 
𝑛 intervals
𝑛	 − 1	interior grid points, 𝑥! 	(𝑖	 = 	2, 3, … 	 , 𝑛).	

A cubic spline is to be fit to each interval, i.e. 𝑛 cubic splines

𝑓! 𝑥 = 𝑎! + 𝑏!𝑥 + 𝑐𝑥!
# + 𝑑𝑥!

) 	 𝑖 = 1,2, … , 𝑛

Since each cubic spline has four coefficients and there are n cubic 
splines, there are 4n coefficients to be determined. 

Thus, 4n boundary conditions, or constraints, must be available.

49
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Finding coefficients

1. The function values, 𝑓(𝑥!) 	= 𝑓! 	(𝑖	 = 	2, 3,…	, 𝑛),	must be the same in the 
two splines on either side of 𝑥! at all of the 𝑛−1 interior points. This 
constraint yields 2(𝑛 −1) conditions.

2. The first and last spline must pass through the first 𝑥" and last 𝑥$(" points. 
That is, 𝑓" 𝑥" = 𝑓", 𝑓$(" 𝑥$(" = 𝑓$(" This constraint yields 2 conditions.

3. The first derivative of the two splines on either side of point 𝑥! must be equal 
at all of the 𝑛−1 interior points. This constraint yields (𝑛 −1) conditions.

4. The second derivative of the two splines on either side of point 𝑥! must be 
equal at all of the 𝑛−1	interior points. Another (𝑛 −1) conditions.

TOTAL = 2 𝑛−1 +2+ 𝑛−1 + 𝑛−1 = 4𝑛−2 conditions. We need 4𝑛.

How to set two additional conditions?

50
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The last two conditions (many possibilities)

1. Natural spline - the second order derivatives are zero on 
boundaries 𝑓".. = 0 and 𝑓′′$(" = 0

2. Curvature-adjusted cubic spline. 
Input some values for the second order derivatives 𝑓" ′′ and 𝑓′′$("  at 
boundaries.

3. Clamped cubic spline 
Input values for the first order 𝑓" ′ and 𝑓′$(" 	derivates at boundaries

4. Parabolically terminated cubic spline 
Specifying 𝑑" = 𝑑$ = 0 that is the same as 𝑐" = 𝑐# , 𝑐$'" = 𝑐$

5. Not-a-knot cubic spline.
 𝑑" = 𝑑# , 𝑑$'" = 𝑑$

6. And many more …
Note that MATLAB’s default spline command constructs a not-a-knot 
spline when given four or more points. 
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Implementations

Many numerical libraries have spline interpolation programs

Both C++ and Fortran versions of the spline interpolation van be found at 

C++ 

https://ww2.odu.edu/~agodunov/book/programs.html

Fortran 

https://ww2.odu.edu/~agodunov/computing/programs/index.html
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Example
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Comments

Generally, spline does not have advantages over polynomial 
interpolation when used for smooth, well-behaved data, or when data 
points are close on x scale. 

The advantage of spline comes into the picture when dealing with 
''sparse'' data, when 

• there are only a few points for smooth functions

• or when the number of points is close to the number of expected 
maximums.
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Example: spline and  polynomial interpolation

Quality of interpolation: average difference from f(x)
      spline           1st            3rd            5th            7th
      0.0004      0.0171      0.0013      0.0012      0.0004
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Example: spline and  polynomial interpolation

Quality of interpolation: average difference from f(x)
      spline           1st            3rd            5th            7th
      0.0526      0.1410      0.0848      0.1434      0.2808
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https://ww2.odu.edu/~agodunov/book/programs.html
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Bézier curves 

Bézier curves are splines that allow the user to control the slopes at the 
knots. In return for the extra freedom, the smoothness of the first and 
second derivatives across the knot, which are automatic features of the 
cubic splines of the previous section, are no longer guaranteed. 

Bézier splines are appropriate for cases where corners (discontinuous 
first derivatives) and abrupt changes in curvature (discontinuous 
second derivatives) are occasionally needed. 

Bézier curves  are named after French engineer Pierre Bézier, who 
used it in the 1960s for designing curves for the bodywork of Renault 
cars.

Bézier curves – enormous number of applications (computer fonts, 
computer-aided design, animation, user interfaces, robotics, ...)

61
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Bézier curves (history) 

Bézier popularized but did not actually create the Bézier curve.
He using such curves to design automobile bodies for Renault (French 
car manufacturer) . 

The curves were first developed in 1959 by Paul de Casteljau using de 
Casteljau's algorithm (that time he work for Citroën – a rival French car 
manufacturer).

There are comments that the method was developed independently by 
Bézier and Casteljau but Renault and Citroën companies wanted to 
keep it secret. 
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BéExample - fonts

Times-Roman T and 5 made with Bézier splines. Blue circles are spline 
endpoints, and black circles are control points.

note: PostScript fonts are built directly from Bézier curves.
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Part 6: 

And more …

64

Chebyshev’s interpolation 

It turns out that the choice of base point spacing can have a significant 
effect on the interpolation error. 

Chebyshev interpolation refers to a particular optimal way of spacing 
the points. 

Chebyshev’s polynomials (defined on [−1, +1])

𝑇$ 𝑥 = cos(𝑛 arccos 𝑥)

𝑇" 𝑥 = 𝑥

𝑇# 𝑥 = 2𝑥# − 1

𝑇) 𝑥 = 4𝑥) − 3𝑥

…
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Chebyshev’s interpolation (cont.)

Chebyshev interpolation is a good way to turn general functions into a 
small number of floating-point operations, for ease of computation. 

An upper bound for the error made is easily available, is usually smaller 
than for evenly spaced interpolation, and can be made as small as 
desired. 

Chebyshev polynomials are widely used in physics!
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Rational function interpolation

Rational functions may well interpolate functions with poles

𝑓 𝑥 =
𝑎& + 𝑎"𝑥 + 𝑎#𝑥# + ⋯ 𝑎$𝑥$

𝑏& + 𝑏"𝑥 + 𝑏#𝑥# + ⋯ 𝑏/𝑥/

that is with zeros of the denominator

𝑏& + 𝑏"𝑥 + 𝑏#𝑥# + ⋯ 𝑏/𝑥/ = 0
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Interpolation in two or more dimensions 

• bilinear interpolation

• bicubic interpolation

• bicubic spline

• …
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Applications for Interpolation

Interpolation has many applications both in physics, science, and 
engineering. 

Interpolation is a corner's stone in numerical integration (integrations, 
differentiation, Ordinary Differential Equations, Partial Differential 
Equations). 

Two-dimensional interpolation methods are widely used in image 
processing, including digital cameras. 
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Extrapolation

If you are interested in function values outside the range 𝑥" , … 𝑥$ 	then 
the problem is called extrapolation.

Generally, this procedure is much less accurate than interpolation.

You know how it is difficult to extrapolate (foresee) the future, for 
example, for the stock market.
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Data fitting

If data values 𝑓!(𝑥!)	are a result of experimental observation with some 
errors, then data fitting may be a better way to proceed. 

In data fitting we let 𝑔(𝑥!)	to differ from measured values 𝑓!  at 𝑥!  points 
having one function only to fit all data points; i.e., the function 𝑔(𝑥) fits 
all the set of data. 

Data fitting may reproduce well the trend of the data, even correcting 
some experimental errors.
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