
1

Monte Carlo method I
A. Godunov

1. What is Monte Carlo method?
2. Uniform random number generators (RNG)
3. Non-uniform random number generators

1

Part 1:

What is Monte Carlo method?

2

What is the most probable number
for the sum of two dice?

36 possibilities

6 times – for 7

31211109876
111098765
10987654
9876543
8765432
7654321
654321

3

Deterministic vs. stochastic

Deterministic model – the output is completely determined by given
conditions.

Stochastic model – randomness is imbedded when the output cannot
be predicted exactly but only as a probability.
Example: thermal motions, radiative decay, …

Monte Carlo methods can be used for solving both stochastic and
(complex) deterministic problems.

Monte Carlo methods may solve previously intractable problems by
providing generally approximate solutions.

MC methods can be easier to implement comparing to analytical or
numerical solutions.

History – why the method is called Monte Carlo method?
Stanislaw Ulam, John von Neumann, Nicholas Metropolis, … 4

4

The Law of Large Numbers

The Law of Large Numbers is the foundation of MC methods: “The
results obtained from performing a large number of trials should be
close to the expected value. And it will become closer to
the true expected value, the more trials you perform.”

5

5

Application

• Physical sciences (both classical and quantum systems)

• Engineering (complex systems)

• Risk management

• Finance and business

• Search and rescue

• Cryptography

• Optimization

• … and many more!

6

6

2

Enormous number of applications

Library of congress: search - books/printed material

“Monte Carlo method” 1691 results

“Monte Carlo simulation” 640 results

“Monte Carlo physics” 445 results

7

7

88

8

999

9

101010

10

111111

11

Just … quantum Monte Carlo calculations

Review paper …

12

12

3

13

13

Part : 2

Random Number Generators (RNG)

14

Random sequences.

We define a sequence 𝑟!,𝑟# …	 as random if there are no correlations
among the numbers. Yet being random does not mean that all the
numbers in the sequence are equally likely to occur.

If all the numbers in a sequence are equally likely to occur, then the
sequence is called uniform.
Note that 1,2,3,4,… is uniform but not random.

Furthermore, it is possible to have a sequence of numbers that, in
some sense, are random but have very short-range correlations among
themselves, for example, 𝑟! , 1 − 𝑟! , 𝑟# , 1 − 𝑟# , 𝑟$, 1 − 𝑟$, …

Mathematically, the likelihood of a number occurring is described by a
distribution function 𝑃(𝑟), where 𝑃(𝑟)𝑑𝑟 is the probability of finding 𝑟 in
the interval [𝑟, 𝑟 + 𝑑𝑟].

A uniform distribution means that 𝑃(𝑟) 	= 	𝑎	constant.

15

15

Sources of Random Numbers

• Tables (in the past)

• Hardware (external sources of random numbers – generates
random numbers from a physics process).

• Software (source of pseudorandom numbers)

16

16

Tables …

A Million Random Digits with
100,000 Normal Deviates
by RAND

17

00000 10097 32533 76520 13586 34673 54876 80959 09117 39292 74945
00001 37542 04805 64894 74296 24805 24037 20636 10402 00822 91665

00002 08422 68953 19645 09303 23209 02560 15953 34764 35080 33606
00003 99019 02529 09376 70715 38311 31165 88676 74397 04436 27659
00004 12807 99970 80157 36147 64032 36653 98951 16877 12171 76833

00005 66065 74717 34072 76850 36697 36170 65813 39885 11199 29170
00006 31060 10805 45571 82406 35303 42614 86799 07439 23403 09732

00007 85269 77602 02051 65692 68665 74818 73053 85247 18623 88579
00008 63573 32135 05325 47048 90553 57548 28468 28709 83491 25624
00009 73796 45753 03529 64778 35808 34282 60935 20344 35273 88435

00010 98520 17767 14905 68607 22109 40558 60970 93433 50500 73998
00011 11805 05431 39808 27732 50725 68248 29405 24201 52775 67851
00012 83452 99634 06288 98083 13746 70078 18475 40610 68711 77817

00013 88685 40200 86507 58401 36766 67951 90364 76493 29609 11062
00014 99594 67348 87517 64969 91826 08928 93785 61368 23478 34113
.....

17

Hardware

Many devices based on physics …

18

18

4

19

Software – pseudo Random Number Generators

• By their very nature, computers are deterministic devices and so
cannot create a random sequence.
Computed random number sequences must contain correlations and
in this way cannot be truly random.

• if we know a computed random number 𝑟% and its preceding
elements, then it is always possible to figure out 𝑟%&! .
Therefore, computers are said to generate pseudorandom numbers.

• While more sophisticated generators do a better job at hiding the
correlations, experience shows that if you look hard enough or use
pseudorandom numbers long enough, you will notice correlations.

19

20

Good Random Number Generators

Other (still very important) issues

1. long period

2. independent of the previous number

3. produce the same sequence if started with same initial conditions
(seed value)

4. fast

Two most important issues:
1. randomness
2. knowledge of the distribution.

20

21

Basic techniques for RNG

The standard methods of generating pseudorandom numbers use
modular reduction in congruential relationships.

Two basic techniques for generating uniform random numbers:
1. congruential methods
2. feedback shift register methods.
For each basic technique there are many variations.

The standard random-number generator on computers generates
uniform distributions between 0 and 1.
In other words, the standard random-number generator outputs
numbers in this interval, each with an equal probability yet each
independent of the previous number.

21

22

Linear Congruent Method for a uniform RNG

The linear congruent or power residue method is the common way
of generating a pseudorandom sequence of numbers
 0 ≤ 	 𝑟' ≤ 	𝑀	 − 1	over the interval [0, 𝑀 − 1].

starting value x0 is called “seed”

coefficients a and c should be chosen very carefully

÷
ø
ö

ç
è
æ +

=+= -
- M

caxremainderMcaxx i
ii

1
1),mod(

MMbbMb *)/int(),mod(-=

the method was suggested by D. H. Lehmer in 1948

Mxi <£ -10

22

23

Example:

a=4, c=1, M=9, x1=3
x2 = 4
x3 = 8
x4 = 6
x5-10 = 7, 2, 0, 1, 5, 3

MMbbMb
Mcaxx ii

*)/int(),mod(
),mod(1

-=
+= -

interval: 0-8, i.e. [0,M-1]
period: 9 i.e. M numbers (then repeat)

23

24

Magic numbers for Linear Congruent Method

M (length of the sequence) must be quite large

However there must be no overflow
(therefore for 32 bit machines M=231 » 2*109)

Good “magic” number for linear congruent method
(for 32 bit machine):

a = 16,807, c = 0, M = 2,147,483,647
for c = 0 “multiplicative congruential generator”:

),mod(1 Mcaxx ii += -

24

5

25

Random Numbers on interval [A,B]

Scale results from xi on [0,M-1] to yi on [0,1]

Scale results from xi on [0,1] to yi on [A,B]

ii xABAy)(-+=

)1/(-= Mxy ii

25

26

Other Linear Congruential Generators

• Multiple Recursive Generators
many versions including “Lagged Fibonacci”

• Matrix Congruential Generators

• Add-with-Carry, Subtract-with-Borrow, and Multiply -with-Carry
Generators

26

27

Other Generators

• Nonlinear Congruential Generators

• Feedback Shift Register Generators

• Generators Based on Cellular Automata

• Generators Based on Chaotic Systems

• …

James E. Gentle – “Random Number Generation and Monte
Carlo Methods

Second edition - 2004

27

28

Attention!

Before using a random-number generator in your programs, you
should check its range and that it produces numbers that “look”
random.

Assessing Randomness and Uniformity

1. plots

2. k-th moment of a distribution

3. near-neighbor correlation

28

29

1. Plot it.

Plots: Your visual cortex is quite refined at recognizing patterns and will
tell you immediately if there is one in your random numbers

§ 2D figure, where xi and yi are from two random sequences
(parking lot test)

§ 3D figure (xi, yi, zi)

§ 2D figure for correlation (xi, xi+k) (sure, there is a problem here)

29

30

2. k-th moment

k-th momentum (if the numbers are distributed uniformly)

If the formula above holds for your generator, then you know that the

distribution is uniform.

If the deviation varies as ⁄1 𝑁, then you also know that the distribution

is random because the ⁄1 𝑁	 result derives from assuming

randomness.

30

6

31

3. Near-neighbor correlation

Taking sums of products for small k:

If the formula above holds for your random numbers, then you know that
they are uniform and independent.

If the deviation varies as ⁄1 𝑁, then you also know that the distribution

is random.

31

32

Test Suites (most known) for RNG*

the NIST Test Suite (NIST, 2000) includes sixteen tests
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

“DIEHARD Battery of Tests of Randomness (eighteen tests)
https://en.wikipedia.org/wiki/Diehard_tests

TestU01: includes the tests from DIEHARD and NIST and
several other tests that uncover problems in some
generators that pass DIEHARD and NIST
http://simul.iro.umontreal.ca/testu01/tu01.html

32

33

Standard RNG in C++

#include <cstdlib> library

srand(seed) is used to initialize the RNG

rand() returns a pseudo random integer in
 the range 0 to RAND_MAX.
 RAND_MAX = 32767

Generating integer random numbers in a range i1 – i2:

random_i = i1 + (rand()%(i2-i1+1));

a better method to do the same

random_i = i1 + int(1.0*(i2-i1+1)*rand()/(RAND_MAX-1.0));

Generating real random numbers between 0.0 and 1.0

drandom = 1.0*rand()/(RAND_MAX-1);

33

34

// generate integer random numbers between i1 and i2
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;

int main ()
{
 int nmax=10; /* generate 10 random numbers*/
 int i1=1, i2=6, irandom;
 srand (123); /* initial seed */
//srand(time(NULL)); // better to "randomize" seed values

 for (int i=0; i < nmax; i=i+1)
 {
 irandom = i1+rand()%(i2-i1+1);number between i1 & i2*/
 cout << " " << irandom << endl;
 }
 system("pause");
 return 0;
}

Example: srand and rand in C++
3

 4
 6
 1
 6
 2
 6
 3
 5
 3

34

35

/* generate random numbers between 0.0 and 1.0 */
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std;
int main ()
{
 int nmax = 10; /*generate 10 random number*/
 double drandom;
 cout.precision(4);
 cout.setf(ios::fixed | ios::showpoint);

 srand(4567); /* initial seed value */
 for (int i=0; i < nmax; i=i+1)
 {
 drandom = 1.0*rand()/(RAND_MAX-1);
 cout << "d = " << drandom << endl;
 }
 system("pause");
 return 0;
}

Example: cont. for float

d = 0.0357
d = 0.7331
d = 0.8495
d = 0.6552
d = 0.1480
d = 0.9866
d = 0.8528
d = 0.3752
d = 0.3467
d = 0.7425

35

36

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

120

140
uniformity of random numbers from rand
 for 1000 random numbers

nu
m

be
r o

f r
an

do
m

 n
um

be
rs

 in
 a

 b
in

bins

36

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
https://en.wikipedia.org/wiki/Diehard_tests

7

37

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

1400
uniformity of random numbers from rand
 for 10000 random numbers

nu
m

be
r o

f r
an

do
m

 n
um

be
rs

 in
 a

 b
in

bins

37

38

Example:

2D distribution for two
random sequences xi
and yi

k-th moment of the
random number
distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

two random sequences (parking lot test)

5000 points,
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507

y(
i)

x(i)

38

39

Example:

2D distribution for
correlation (xi, xi+5)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5000 points,
k-th momentum <x4>=0.1991
near-neighbor correlation = 0.2507

correlation test

x(
i+

5)

x(i)

39

40

Software for RNG

C/C++, Fortran, Python, …
provide built-in uniform random number generators (but for C++ the period
is just 231-1)

but … except for small studies, some of these built-in generators should
be avoided.

ATTENTION!
Mersenne Twister* is, by far, today's most popular pseudorandom number
generator. It is used by every widely distributed mathematical software
package. USE IT!

Period of the generator is 219937−1

* developed in 1997 by Makoto Matsumoto and Takuji Nishimura

40

41

Mersenne Twister - RNG in C++

Use an implementation of the Mersenne Twister 19337 algorithm built in
<random> header in C++
// Create Random Number Generator
random_device rd;
// Used for random seed to generator

mt19937_64 mt(rd());
// Initialize Mersenne twister implementation

uniform_real_distribution<double> dist(xl, xr);
// Set a real uniform distribution over the desired range

41

42

Mersenne Twister - Python and MatLab

Python

In Python, ran dom.random() the Mersenne Twister generator.
The best one you can find rather than write your own.

To initialize a random sequence, you need to plant a seed in it.
In Python, the statement random.seed(None) seeds the generator with the
system time.

MatLab

In MatLab, rng('default’) is the Mersenne Twister generator.

To initialize a random sequence use rng('shuffle’) to use seed as current
time.

42

8

43

*Random number generator attacks and defenses

Modern cryptography requires high quality RNG.

Cryptographic attacks that exploit weaknesses in RNGs are known
as random number generator attacks.

43

Part : 3

Non-uniform Random Number Generators

44

45

Non-uniform distributions

Most situations in science and engineering demand using random
numbers with non-uniform distributions

Examples:

• Radioactive decay (characterized by a Poisson distribution)

• Gauss distribution

• experiments with different types of distributions

• And many more …

45

46

Methods to generate non-uniform distributions

Principal idea: Generating non-uniform random number distributions
with a uniform random number generators

Useful methods:

• The transformation method

• The rejection method

• Metropolis algorithm (importance sampling)

46

47

1. The transformation method

The method is based on fundamental property of probabilities.

Consider a collection of variables {𝑥! , 𝑥# , … } that are distributed
according to the function 𝑃((𝑥). Then, the probability to find a value you
that lies between 𝑥 and 𝑥 + 𝑑𝑥 is 𝑃(𝑥 𝑑𝑥.

If 𝑦 is a function of 𝑥 as 𝑦(𝑥), then 𝑃(𝑥 𝑑𝑥 = 𝑃) 𝑦 𝑑𝑦 , where 𝑃) 𝑦 is
the probability distribution for {𝑦! , 𝑦# , … }.

For 𝑃(= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐶 we have

𝑑𝑥
𝑑𝑦

=
𝑃) 𝑦
𝐶

, 	 𝑥 = B 𝑃) 𝑦 𝑑𝑦 = 𝐹 𝑦

Then the non-uniform distribution is the inverse function

𝑦 𝑥 = 𝐹*!(𝑥)

47

48

Example 1
1. The Poisson distribution

𝑃) 𝑦 = exp(−𝑦)

Then 𝑥 = ∫ 𝑒*)𝑑𝑦 = 𝑒*) , 	 𝑦 = − ln 𝑥

Thus for a uniform distribution 𝑥' we have 𝑦' = − ln 𝑥' ,	and the resulting
sequence 𝑦' should obey the Poisson distribution

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

48

9

49

Example 2
Gaussian distribution is not so easy to derive but here the answer from
Box and Muller (Box-Muller method)

𝑦 𝑥 =
1

𝜎 2𝜋
𝑒*

!
#
(*+
,

-

Let 𝑥! and 𝑥# are two independent samples chosen from the uniform
distribution on the unit interval 0, 1 then

	 𝑦!= 𝜇 + 𝜎 −2 ln 𝑥! cos(2𝜋𝑥#) 	or	 𝑦# = 𝜇 + 𝜎 −2 ln 𝑥! sin(2𝜋𝑥#)

49

50

2. The rejection method (von Neuman rejection)

However, very often analytical solutions are not known for the
transformation method.

Such situations can be treated by using the rejection method.

Steps:

1. Generate two random numbers
𝑥' on [𝑥. , 𝑥/] and 𝑦' on 𝑦0 , 𝑦1

2. If 𝑦' ≤ 𝑤 𝑥' accept 𝑦'
If 𝑦' > 𝑤 𝑥' reject 𝑦'

3. Then 𝑦' so accepted will have
the 𝑤 𝑥 distribution

50

51

double w(double);
int main ()
{
 int nmax = 50000;
 double xmin=0.0, xmax=2.0, ymin, ymax;
 double x, y;
 ymax = w(xmin);
 ymin = w(xmax);
 srand(time(NULL));
 for (double i=1; i <= nmax; i=i+1)
 {
 x = xmin + (xmax-xmin)*rand()/(RAND_MAX+1);
 y = ymin + (ymax-ymin)*rand()/(RAND_MAX+1);
 if (y > w(x)) continue;
 file_3 << " " << x << endl; /* output to a file */
 }
return 0;
}
/* Probability distribution w(x) */
 double w(double x)
{
 return exp(0.0-1.0*x*x);
}

Example: w(x)=exp(-x2)

51

52

calculations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

500

1000

1500

2000

2500

3000

non-uniform distribution
 w(x) = exp(-x2)

nu
m

be
r o

f r
an

do
m

 n
um

be
rs

 in
 a

 b
in

bins

52

53

calculations

40 60 80 100 120 140 160
0

2000

4000

6000

8000

10000
energy = 100.0
sigma = 20.0

no
rm

al
 e

ne
rg

y
di

st
rib

ut
io

n

energy

53

54

Success rate and number of points

54

10

55

3. The Metropolis method

The Metropolis method is a special case of an importance sampling.

Assume that we want to generate random variables {𝑥! , 𝑥# , … }
according to 𝑝 𝑥 . The Metropolis algorithm produces a random walk of
points {𝑥'} whose asymptotic probability distribution approaches 𝑝 𝑥 .

55

56

The algorithm

1. Choose a trial position 𝑥23'.4 = 𝑥' + 𝛿' where
𝛿' = 𝛿(2 ∗ 𝑟𝑛𝑔 − 1) is a random number in the interval −𝛿, +𝛿 .	

2. Calculate ⁄	𝑟 = 𝑝(𝑥23'.4) 𝑝(𝑥')

a) If 𝑟 ≥ 1 accept the step and let 𝑥'&! = 𝑥23'.4
b) If 𝑟 < 1 generate a random number 𝜇 between 0 and 1
i. If 𝜇 ≤ 𝑟 accept the step and 𝑥'&! = 𝑥23'.4
ii. If 𝜇 > 𝑟 reject the step

How do we choose a good step size 𝛿?

• If 𝛿 is too large, only a small fraction of trail steps will be accepted.
If 𝛿 is too small, a large fraction of trail steps will it be accepted, but
the sampling of the function will be inefficient.

A rough orientation for the magnitude of 𝛿 – about a half steps should
be accepted.

Also – how to chose 𝑥!? Start at 𝑥 where 𝑝(𝑥) is a maximum.

56

57

Compare the rejection and the Metropolis

57

