
1

Tools of computational physics
A. Godunov

1. Major tools of computational physics
2. Hardware
3. Software
4. Programming languages
5. Libraries (numerical, plotting, codes)

1

Part 1:

Major parts

2

Computational Physics

Computing has become a central tool in physics!

From R. Landau “Computational Physics” (2015)

• Physics: methods for computer simulations

• Applied math: solving numerical problems

• Computer science: hardware and software (subject of this lecture)

3

Computer science

The basic ideas behind computational physics are hardware and
software independent

However, for solving a problem in hand one may need to consider
advantages and disadvantages various choices.

Critical or important

• Development time

• Computational time

• Computational memory (RAM)

• Storage memory

Use right tools for your problem!

4

Part 2:

Tools: Hardware

5

Hardware 1.

Desktop or
Laptop

6

2

Internal hardware

Most important for computing

• CPU(s) - central processing unit (how many + how fast)
also - cache memory: cache 1, cache 2

• RAM -random-access memory (GB)
communication with CPU by bus

• GPU – Graphic Processor Unit (how many + how fast)
Can speed up calculations considerably!

• Network Interface (MB/GB per sec)

• HDD – Hard Disk Drive (TB)

7

Top 500

The TOP500 lists the 500 most powerful commercially available
computer systems https://top500.org

8

Part 3:

Software

9

Software

Principal parts

1. Operating system

2. Ideally IDE integrated development environment + language(s)

a) Editor

b) Compiler(s) (for high-level languages)

c) Libraries (modules, toolboxes,...)

3. Optional:

a) Lint and other static code analyzers

b) Debugger

c) Profilers

d) Report generators

10

Two major families

1. Unix and Unix-like

a) Unix - commercial versions: AIX, HP-UX, Solaris, …

b) Apple - macOS

c) Linux – many distributions

2. Windows

Share of operating systems for desktops/laptops

Share of operating systems for clusters/supercomputers:
Linux now runs on all the fastest 500 supercomputers in the world

11

UNIX family

Developed in around 1970 in Bell Labs research center

1. Powerful beyond imagination.

2. ALL the Top 500 supercomputers in the world run on Linux.

3. Linus is based on Unix. macOS is based on Unix.

4. Robust and small kernel.

5. Very safe: sandboxing and rich file permission system.

6. Plenty of tools
editors, programming languages, …

Philosophy of Unix/Linux: “Building blocks” + “glue”

• Building blocks: programs do only one thing, but do it well

• Glue: easy combine various blocks.

12

https://top500.org/

3

Windows

Generally available since 1992

1. Most popular OS in the world for personal computers and laptops.

2. The latest version is Windows 11.

13

Part 4:

Software: Programming languages

14

Programming languages

Important questions

1. Which language to learn?

2. Which language to use?

3. Do I need to learn new language(s)?

Most common in physics

• C and C++ (current standard C++20)

• Python

• Fortran

• Matlab

• Julia

• R

15

Computer languages

Three basic modes to run a code

1. Interpreted: Python, Matlab, Mathematica, R.

2. Compiled: Fortran, C/C++.

3. JIT (Just-in-Time) compilation: Julia

Interpreted languages can we used with:

1. A command line

2. A script file.

16

C

Created in the early 1970s by Dennis Ritchie at Bell Labs,

• General purpose, multi-paradigm, compiled language

• By design, C's features reflect the capabilities of the targeted CPUs

• It was designed to be compiled to provide low-level access to
memory and language constructs that map efficiently to machine
instructions

• The language was primary design for writing operating systems

• Many languages have based directly or indirectly on C, including
C++, C#, Java, JavaScript, Julia, Perl, PHP, Python, Ruby, Swift, …

17

C++

Developed by Bjarne Stroustrup at Bells Labs in the early 1980s

• General purpose, multi-paradigm, compiled language

• C/C++ is the infrastructure of much of the modern computing world.

• Powerful language: you can code anything in C++

• Easy integration with multiprocessor programming
OpenMP, MPI, CUDA, OpenCL, ...

• If you know Unix/Linux and C/C++, you can master everything else

• Excellent compilers (including open-source) and tools.

• Top performance in terms of speed.

18

4

C++

Some disadvantages

• It was not designed for scientific calculations!

• Hard language to learn, even harder to master

• Large specification: C++20 (This causes, at times, portability issues)

• Matrix indexing starts at zero

19

FORTRAN (formula translator)

Grandfather of all modern languages – developed in 1957 (IBM)

At the beginning almost all computing was for physicists!

• General purpose, multi-paradigm, compiled language

• Last version Fortran 2018

• Lot of high-quality libraries (both numerical and applications)

• Still widely used in science in engineering
weather forecast, nuclear weapon research and development, …

• Easy to learn, portable, nice array support, easy to parallelize

• Generally available on clusters and supercomputers

20

FORTRAN (formula translator)

Some disadvantages

• Small community of users

• Most Fortran compilers are proprietary

21

Python

Designed by Guido von Rossum around 1991

• General purpose, multi-paradigm, interpreted language

• Open source

• Intuitive – easy to learn

• Scientific computation modules: NumPy, SciPy, and SymPy

• Plotting modules: matplotlib and ggplot.

• Preinstalled on many systems (e.g. macOS)

22

Python

Some disadvantages

• Considerable time penalty

• Python’s memory usage is high

• Python’s functional programming can be difficult to read

• Runtime Errors: One of the major drawbacks of this language is that
its design has numerous issues

23

MATLAB

Started in the late 1970s, released commercially in 1984.

https://www.mathworks.com/products/matlab.html

• General purpose, multi-paradigm, interpreted language

• Widely used in engineering and industry

• Plenty of codes around
for science, engineering and economics.

• Many useful toolboxes

• Great IDE (Integrated Development Environment)

• Interacts reasonably well with C/C++, Fortran, and R

Some disadvantages

• Can be expensive

• Tight integration with Java

24

5

Other languages

Julia

• Modern, high-performance programming language designed for
scientific computation and data manipulation.

• Designed for parallelism and cloud computing. Syntax close to
Matlab. However, at early stages of life (can be unstable)

R

• High level, open-source language for statistical computation

• Widely used for big data, easy to parallelize

Mathematica

• Mainly oriented toward symbolic computation

• Programming approach is different from other languages.

And more: C#, Javascript, PHP, Perl, Swift, Ruby, …

25

Compare times of calculation …

Results depends on a model/test but here are some average numbers

C++ 1.00

Fortran 0.90

Python 50.0

Matlab 10.0

Mathematica from 4.0 to 900

Julia 3.0

R 250

26

Summary

• C++ good to learn (most powerful general programming language)
if you master C++ you can quickly learn anything else.

• Fortran very powerful but learn only if needed (legacy codes or
libraries)

• Python easy to learn, open source, but generally much slower than
C++ and Fortran

• MATLAB easy to learn, convenient with great IDE, making graphs,
multiple toolboxes available

• Mathematica good problem-solving environment but programming
approach is different from other languages

• Java – rather no, unless the use of Virtual machine is important

27

C++ compilers and IDEs

Microsoft Visual C++ compiler
https://visualstudio.microsoft.com/vs/features/cplusplus/
Windows (IDE included)

Xcode (from Apple)
https://developer.apple.com/xcode/
macOS (IDE included)

Intel C++ compiler
www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
Windows, macOS, Linux (works with Microsoft Visual Studio)

Dev-C++
http://www.bloodshed.net
Windows (IDE included) (open source)

28

Fortran compilers and IDEs

ABSoft
https://www.absoft.com
Windows, macOS, Linux (IDE included)

NAG (Numerical Algorithmic Group)
https://www.nag.com/content/nag-fortran-compiler
Windows, macOS, Linux (IDE included)

Intel Fortran compiler
www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html
Windows (IDE: Microsoft Visual Studio), macOS (IDE: Xcode),
Linux (IDE: Eclipse)

Most clusters and supercomputers have Fortran!

29

Python

Python.org
https://www.python.org
Windows, macOS

Anaconda
https://www.anaconda.com/products/individual
Windows, macOS

IDEs (for Windows, macOS and Linux)
• IDLE https://docs.python.org/3/library/idle.html
• Visual studio https://visualstudio.microsoft.com/vs/features/python/

• Spyder https://www.spyder-ide.org
• Atom https://atom.io
• And many more …

30

http://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
http://www.bloodshed.net/
https://www.absoft.com/
https://www.nag.com/content/nag-fortran-compiler
http://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html
https://www.anaconda.com/products/individual
https://visualstudio.microsoft.com/vs/features/python/
https://www.spyder-ide.org/
https://atom.io/

6

Books … so many

bb

31

Example: a circle using C++

// calculation: the diameter, circumference, and area of a circle
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
 const double pi=3.1415926;
 double radius, diameter, circumference, area;
 cout << "enter radius as float " << endl;
 cin >> radius;
 diameter = 2.0*radius;
 circumference = 2.0*pi*radius;
 area = pi*pow(radius,2);
 cout.setf(ios::fixed | ios::showpoint);
 cout.width(10);
 cout.precision(5);
 cout << "radius = " << radius << endl;
 cout << "diameter = " << diameter << endl;
 cout << "circumf. = " << circumference << endl;
 cout << "area = " << area << endl;
 return 0;
}

32

Example: a circle using MATLAB

% calculation: the diameter, circumference, and area
% of a circle with a given radius

Pi = 3.1415926;

prompt = 'Enter radius of a circle \n';
radius = input(prompt);

diameter = 2.0*radius;
circumference = 2.0*Pi*radius;
area = pi*radius*radius;

fprintf(' radius %8.4f \n',radius);
fprintf(' diameter %8.4f \n',diameter);
fprintf(' circumference %8.4f \n',circumference);
fprintf(' area %8.4f \n',area);

%end

33

Example: a circle using Python

-*- coding: utf-8 -*-
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
 by RH Landau, et all."""

Area.py: Area of a circle, simple program
from math import pi

N = 1
r = 1.3
C = 2.* pi* r
A = pi * r**2

print ('Program number =', N, '\n r, C, A = ', r, C, A)

34

Example: Fortran – Fibonacci prime numbers

program fibonacci
! the program generates Fibonacci numbers and chooses only prime numbers
! f(0) = 0
! f(1) = 1
! f(n) = f(n-1) + f(n-2) for n>1
implicit none
integer :: f(0:100)
integer :: i, j
character :: prime*5
 f(0) = 0
 f(1) = 1
 do i=2,40
 f(i) = f(i-1) + f(i-2)
! check for prime numbers
 prime = 'prime'
 do j=2,f(i)-1
 if (f(i) == (f(i)/j)*j) then
 prime = ' '
 exit
 end if
 end do
 write (*,102) i, f(i), prime
 end do
102 format(i3, i12, a6)
 stop
 end

35

Other items

1. Version Control

2. Backups

3. Dynamic notebooks (Jupiter, Markdown, …)

36

7

Part 4b:

High Performance Computing (HPC)

37

High-performance computing (HPC)

Deals with scientific problems that require substantial computational
power.

Usually, but not always, HPC involves the use of several processors:

• Multi-core/many-core CPUs (in a single machine or networked).

• Many-core coprocessors.

• GPUs (graphics processing units).

• TPUs (tensor processing units).

• FPGAs (field-programmable gate arrays)

“Amateurs talk about the speed of their processors, but professionals
study coding techniques” from Gen. Robert H. Barrow, USMC (27th
Commandant of the US Marine Corps)

38

High-performance computing (HPC)

Resources

• Livermore National Lab https://hpc.llnl.gov/training/

• HPC carpentry https://www.hpc-carpentry.org

• More https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

• …

And many books

39

Part 5:

Libraries

40

You should not reinvent the wheel

§ Computational Physics Libraries

§ Numerical Libraries and Depositories

§ Large packages (example: the COMSOL Multiphysics)

www.odu.edu/~agodunov/computing/lib_net.html

Note 1: do not use routines as black boxes without understanding

Note 2: Collect you own library!

41

Few quotes

“Spend your intellectual energies on the current problem - not on fancy
tools. When the volume and sophistication of your problems demand
these weapons you will know it. That is the time to learn a new tool -
and learn it by re-doing an already-solved problem, not a new one.”
F.S. Acton

"I realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.”
Maurice Wilkes, after the first attempts to write programs for the
EDSAC computer

"I conclude that there are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies
and the other way is to make it so complicated that there are no
obvious deficiencies.”
Charles Hoare, inventor of the QuickSort algorithm, in his 1990 ACM
Turing Award Lecture

42

https://hpc.llnl.gov/training/
https://www.hpc-carpentry.org/
https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

